• Title/Summary/Keyword: Correlation Network

Search Result 1,395, Processing Time 0.023 seconds

A Study on the Performance Monitoring and Optimization of a High Speed Network for the Transfer of Massive VLBI Data (대용량 VLBI 데이터 전송을 위한 초고속 네트워크 성능 모니터링 및 최적화 연구)

  • Song, Min-Gyu;Kim, Hyo-Ryung;Kang, Yong-Woo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.6
    • /
    • pp.1097-1108
    • /
    • 2019
  • In VLBI(Very Long Baseline Interferometry), the observed data created in many observatories which are far away from each other should be collected in correlation center for data analysis. Traditionally, observed data is moved by transportation such as car or airplane. But it is replaced with data transfer over the network rapidly as the advancement of information technology, and therefore, international cooperative research is also now more widely expanding. e-KVN(electronic Korean VLBI Network) has been upgraded two times so the network interface of KVN has been evolved to the highest specification of 100GbE. During this time period, the portion of network usage for VLBI observations and experiments in KVN has been increased exponentially. In this paper, we describe KVN VLBI system and network technology for the performance upgrade and advanced status monitoring between three radio astronomy observatories and Daejeon correlation center with KREONET(Korea Research Environment Open NETwork). Furthermore, future plan of e-KVN for the implementation of wide band VLBI observation will be also briefly discussed.

The Prediction and Analysis of the Power Energy Time Series by Using the Elman Recurrent Neural Network (엘만 순환 신경망을 사용한 전력 에너지 시계열의 예측 및 분석)

  • Lee, Chang-Yong;Kim, Jinho
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.41 no.1
    • /
    • pp.84-93
    • /
    • 2018
  • In this paper, we propose an Elman recurrent neural network to predict and analyze a time series of power energy consumption. To this end, we consider the volatility of the time series and apply the sample variance and the detrended fluctuation analyses to the volatilities. We demonstrate that there exists a correlation in the time series of the volatilities, which suggests that the power consumption time series contain a non-negligible amount of the non-linear correlation. Based on this finding, we adopt the Elman recurrent neural network as the model for the prediction of the power consumption. As the simplest form of the recurrent network, the Elman network is designed to learn sequential or time-varying pattern and could predict learned series of values. The Elman network has a layer of "context units" in addition to a standard feedforward network. By adjusting two parameters in the model and performing the cross validation, we demonstrated that the proposed model predicts the power consumption with the relative errors and the average errors in the range of 2%~5% and 3kWh~8kWh, respectively. To further confirm the experimental results, we performed two types of the cross validations designed for the time series data. We also support the validity of the model by analyzing the multi-step forecasting. We found that the prediction errors tend to be saturated although they increase as the prediction time step increases. The results of this study can be used to the energy management system in terms of the effective control of the cross usage of the electric and the gas energies.

Analysis of the Impact Relationship for Risk Factors on Big Data Projects Using SNA (SNA를 활용한 빅데이터 프로젝트의 위험요인 영향 관계 분석)

  • Park, Dae-Gwi;Kim, Seung-Hee
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.1
    • /
    • pp.79-86
    • /
    • 2021
  • In order to increase the probability of success in big data projects, quantified techniques are required to analyze the root cause of risks from complex causes and establish optimal countermeasures. To this end, this study measures risk factors and relationships through SNA analysis and presents a way to respond to risks based on them. In other words, it derives a dependency network matrix by utilizing the results of correlation analysis between risk groups in the big data projects presented in the preliminary study and performs SNA analysis. In order to derive the dependency network matrix, partial correlation is obtained from the correlation between the risk nodes, and activity dependencies are derived by node by calculating the correlation influence and correlation dependency, thereby producing the causal relationship between the risk nodes and the degree of influence between all nodes in correlation. Recognizing the root cause of risks from networks between risk factors derived through SNA between risk factors enables more optimized and efficient risk management. This study is the first to apply SNA analysis techniques in relation to risk management response, and the results of this study are significant in that it not only optimizes the sequence of risk management for major risks in relation to risk management in IT projects but also presents a new risk analysis technique for risk control.

Correlation Analysis of Airline Customer Satisfaction using Random Forest with Deep Neural Network and Support Vector Machine Model

  • Hong, Sang Hoon;Kim, Bumsu;Jung, Yong Gyu
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.12 no.4
    • /
    • pp.26-32
    • /
    • 2020
  • There are many airline customer evaluation data, but they are insufficient in terms of predicting customer satisfaction in practice. In particular, they are generally insufficient in case of verification of data value and development of a customer satisfaction prediction model based on customer evaluation data. In this paper, airline customer satisfaction analysis is conducted through an experiment of correlation analysis between customer evaluation data provided by Google's Kaggle. The difference in accuracy varied according to the three types, which are the overall variables, the top 4 and top 8 variables with the highest correlation. To build an airline customer satisfaction prediction model, they are applied to three classification algorithms of Random Forest, SVM, DNN and conduct a classification experiment. They are divided into training data and verification data by 7:3. As a result, the DNN model showed the lowest accuracy at 86.4%, while the SVM model at 89% and the Random Forest model at 95.7% showed the highest accuracy and performance.

An Efficient Event Detection Algorithm using Spatio-Temporal Correlation in Surveillance Reconnaissance Sensor Networks (감시정찰 센서네트워크에서 시공간 연관성를 이용한 효율적인 이벤트 탐지 기법)

  • Yeo, Myung-Ho;Kim, Yong-Hyun;Kim, Hun-Kyu;Lee, Noh-Bok
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.5
    • /
    • pp.913-919
    • /
    • 2011
  • In this paper, we present a new efficient event detection algorithm for sensor networks with faults. We focus on multi-attributed events, which are sets of data points that correspond to interesting or unusual patterns in the underlying phenomenon that the network monitors. Conventional algorithms cannot detect some events because they treat only their own sensor readings which can be affected easily by environmental or physical problem. Our approach exploits spatio-temporal correlation of sensor readings. Sensor nodes exchange a fault-tolerant code encoded their own readings with neighbors, organize virtual sensor readings which have spatio-temporal correlation, and determine a result for multi-attributed events from them. In the result, our proposed algorithm provides improvement of detecting multi-attributed events and reduces the number of false-negatives due to negative environmental effects.

Swarm-based hybridizations of neural network for predicting the concrete strength

  • Ma, Xinyan;Foong, Loke Kok;Morasaei, Armin;Ghabussi, Aria;Lyu, Zongjie
    • Smart Structures and Systems
    • /
    • v.26 no.2
    • /
    • pp.241-251
    • /
    • 2020
  • Due to the undeniable importance of approximating the concrete compressive strength (CSC) in civil engineering, this paper focuses on presenting four novel optimizations of multi-layer perceptron (MLP) neural network, namely artificial bee colony (ABC-MLP), grasshopper optimization algorithm (GOA-MLP), shuffled frog leaping algorithm (SFLA-MLP), and salp swarm algorithm (SSA-MLP) for predicting this crucial parameter. The used dataset consists of 103 rows of information concerning seven influential parameters (cement, slag, water, fly ash, superplasticizer, fine aggregate, and coarse aggregate). In this work, the best-fitted complexity of each ensemble is determined by a population-based sensitivity analysis. The GOA distinguished its self by the least complexity (population size = 50) and emerged as the second time-effective optimizer. Referring to the prediction results, all tested algorithms are able to construct reliable networks. However, the SSA (Correlation = 0.9652 and Error = 1.3939) and GOA (Correlation = 0.9629 and Error = 1.3922) performed more accurately than ABC (Correlation = 0.7060 and Error = 4.0161) and SFLA (Correlation = 0.8890 and Error = 2.5480). Therefore, the SSA-MLP and GOA-MLP can be promising alternatives to laboratorial and traditional CSC evaluative methods.

Metaheuristic-hybridized multilayer perceptron in slope stability analysis

  • Ye, Xinyu;Moayedi, Hossein;Khari, Mahdy;Foong, Loke Kok
    • Smart Structures and Systems
    • /
    • v.26 no.3
    • /
    • pp.263-275
    • /
    • 2020
  • This research is dedicated to slope stability analysis using novel intelligent models. By coupling a neural network with spotted hyena optimizer (SHO), salp swarm algorithm (SSA), shuffled frog leaping algorithm (SFLA), and league champion optimization algorithm (LCA) metaheuristic algorithms, four predictive ensembles are built for predicting the factor of safety (FOS) of a single-layer cohesive soil slope. The data used to develop the ensembles are provided from a vast finite element analysis. After creating the proposed models, it was observed that the best population size for the SHO, SSA, SFLA, and LCA is 300, 400, 400, and 200, respectively. Evaluation of the results showed that the combination of metaheuristic and neural approaches offers capable tools for estimating the FOS. However, the SSA (error = 0.3532 and correlation = 0.9937), emerged as the most reliable optimizer, followed by LCA (error = 0.5430 and correlation = 0.9843), SFLA (error = 0.8176 and correlation = 0.9645), and SHO (error = 2.0887 and correlation = 0.8614). Due to the high accuracy of the SSA in properly adjusting the computational parameters of the neural network, the corresponding FOS predictive formula is presented to be used as a fast yet accurate substitution for traditional methods.

MODELING MEASURES OF RISK CORRELATION FOR QUANTITATIVE FLOAT MANAGEMENT OF CONSTRUCTION PROJECTS

  • Richard C. Jr. Thompson;Gunnar Lucko
    • International conference on construction engineering and project management
    • /
    • 2013.01a
    • /
    • pp.459-466
    • /
    • 2013
  • Risk exists in all construction projects and resides among the collection of subcontractors and their array of individual activities. Wherever risk resides, the interrelation of participants to one another becomes paramount for the way in which risk is measured. Inherent risk becomes recognizable and quantifiable within network schedules in the form of consuming float - the flexibility to absorb delays. Allocating, owning, valuing, and expending such float in network schedules has been debated since the inception of the critical path method itself. This research investigates the foundational element of a three-part approach that examines how float can be traded as a commodity, a concept whose promise remains unfulfilled for lack of a holistic approach. The Capital Asset Pricing Model (CAPM) of financial portfolio theory, which describes the relationship between risk and expected return of individual stocks, is explored as an analogy to quantify the inherent risk of the participants in construction projects. The inherent relationship between them and their impact on overall schedule performance, defined as schedule risk -the likelihood of failing to meet schedule plans and the effect of such failure, is matched with the use of CAPM's beta component - the risk correlation measure of an individual stock to that of the entire market - to determine parallels with respect to the inner workings and risks represented by each entity or activity within a schedule. This correlation is the initial theoretical extension that is required to identify where risk resides within construction projects, allocate and commoditize it, and achieve actual tradability.

  • PDF

Research on Objects Tracking System using HOG Algorithm and CNN (HOG 알고리즘과 CNN을 이용한 객체 검출 시스템에 관한 연구)

  • Park Byungjoon;Kim Hyunsik
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.20 no.3
    • /
    • pp.13-23
    • /
    • 2024
  • For the purpose of predicting credit card customer churn accurately through data analysis Detecting and tracking objects in continuous video is essential in self-driving cars, security and surveillance systems, sports analytics, medical image processing, and more. Correlation tracking methods such as Normalized Cross Correlation(NCC) and Sum of Absolute Differences(SAD) are used as an effective way to measure the similarity between two images. NCC, a representative correlation tracking method, has been useful in real-time environments because it is relatively simple to compute and effective. However, correlation tracking methods are sensitive to rotation and size changes of objects, making them difficult to apply to real-time changing videos. To overcome these limitations, this paper proposes an object tracking method using the Histogram of Oriented Gradients(HOG) feature to effectively obtain object data and the Convolution Neural Network(CNN) algorithm. By using the two algorithms, the shape and structure of the object can be effectively represented and learned, resulting in more reliable and accurate object tracking. In this paper, the performance of the proposed method is verified through experiments and its superiority is demonstrated.

An anti-noise real-time cross-correlation method for bolted joint monitoring using piezoceramic transducers

  • Ruan, Jiabiao;Zhang, Zhimin;Wang, Tao;Li, Yourong;Song, Gangbing
    • Smart Structures and Systems
    • /
    • v.16 no.2
    • /
    • pp.281-294
    • /
    • 2015
  • Bolted joint connection is the most commonly used connection element in structures and devices. The loosening due to external dynamic loads cannot be observed and measured easily and may cause catastrophic loss especially in an extreme requirement and/or environment. In this paper, an innovative Real-time Cross-Correlation Method (RCCM) for monitoring of the bolted joint loosening was proposed. We apply time reversal process on stress wave propagation to obtain correlation signal. The correlation signal's peak amplitude represents the cross-correlation between the loosening state and the baseline working state; therefore, it can detect the state of loosening. Since the bolt states are uncorrelated with noise, the peak amplitude will not be affected by noise and disturbance while it increases SNR level and increases the measured signals' reliability. The correlation process is carried out online through physical wave propagation without any other post offline complicated analyses and calculations. We implemented the proposed RCCM on a single bolt/nut joint experimental device to quantitatively detect the loosening states successfully. After that we implemented the proposed method on a real large structure (reaction wall) with multiple bolted joint connections. Loosening indexes were built for both experiments to indicate the loosening states. Finally, we demonstrated the proposed method's great anti-noise and/or disturbance ability. In the instrumentation, we simply mounted Lead Zirconium Titanate (PZT) patches on the device/structure surface without any modifications of the bolted connection. The low-cost PZTs used as actuators and sensors for active sensing are easily extended to a sensing network for large scale bolted joint network monitoring.