• Title/Summary/Keyword: Correction System

Search Result 2,531, Processing Time 0.025 seconds

AVHRR MOSAIC IMAGE DATA SET FOR ASIAN REGION

  • Yokoyama, Ryuzo;Lei, Liping;Purevdorj, Ts.;Tanba, Sumio
    • Proceedings of the KSRS Conference
    • /
    • 1999.11a
    • /
    • pp.285-289
    • /
    • 1999
  • A processing system to produce cloud-free composite image data set was developed. In the process, a fine geometric correction based on orbit parameters and ground control points and radiometric correction based on 6S code are applied. Presently, by using AVHRR image data received at Tokyo, Okinawa, Ulaanbaatar and Bangkok, data set of 10 days composite images covering almost whole Asian region.

  • PDF

A station-keeping method considering satellite attitude (자세를 고려한 위성체 궤도유지 기법)

  • 박재훈;이장규;김유단;최재원
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.799-804
    • /
    • 1993
  • In this paper, the scheme of combining the orbit correction and attitude control of a 3-axis stabilized satellite is suggested. Being coupled and complimentary, it is preferable to achieve the required orbit correction and the desired attitude control simultaneously. A solution of the probes simultaneous control of orbit correction and attitude of a satellite, is obtained by solving the two point boundary value problem numerically. The first-order gradient algorithm is used to solve the numerical problem. The simulation results show that the East-West station keeping process with the combined system of an orbit correction and an attitude control is satisfactory.

  • PDF

Precise Height Determination in Mountainous Areas of South Korea (우리나라 산악지에서의 정밀표고 결정)

  • Lee, Suk-Bae;Auh, Su-Chang
    • Journal of Cadastre & Land InformatiX
    • /
    • v.48 no.2
    • /
    • pp.99-108
    • /
    • 2018
  • The purpose of this study is to determine the precise height in mountainous areas of South Korea and Jiri mountain area was selected as a test bed for the study. Gravity observation and GNSS surveying were performed for 44 BM(Benchmark) points in the test bed and calculate the height and the height correction. In the calculation, the dynamic correction amount, the orthometric correction amount and the normal correction amount were calculated, and the dynamic height and orthometric height and the normal height were calculated considering each correction amount. The results showed that the difference between normal gravity and observed gravity and also the difference between orthometric correction and the normal correction. In addition, the results of the comparison of the present official BM height and the computed orthometric height in this study show that Korean height system should be shifted from the normal orthometric height system to the orthometric height system. Because the difference between the orthometric correction and the normal correction within the test bed indicated a distribution of at a minimum of -234.41 mm up to 196.925 mm, and the difference between the present official BM height and the calculated orthometric height were distributed from -0.121m to 0.011 m.

Calibration Technology for Precise Alignment of Large Flat Panel Displays (대형 평판 디스플레이의 정밀 정렬을 위한 캘리브레이션 기술)

  • Hong, Jun-Ho;Shin, Dongwon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.3
    • /
    • pp.100-109
    • /
    • 2022
  • In this study, calibration technology that increases the alignment accuracy in large flexible flat panels was studied. For precise of calibration, a systematization of the calibration algorithm was established, and a calibration correction technique was studied to revise calibration errors. A coordinate systems of camera and UVW stage was established to get the global position of the mark, and equations for translational and rotational calibration were systematically derived based on geometrical analysis. Correction process for the calibration data was carried, and alignment experiments were performed sequentially in cases of the presence or absence of calibration-correction. Alignment results of both calibration correction and non-calibration correction showed accuracy performance less than 1㎛. On the other hand, the standard deviation in calibration-correction is smaller than non-calibration correction. Therefore, calibration correction showed improvement of the alignment repeatability.

An Arc Sensor and Its Interface System for Welding Robots (용접로봇용 아크센서 및 인터페이스 시스템)

  • 오승준;김재웅
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.1
    • /
    • pp.76-82
    • /
    • 2000
  • An arc sensor system to compensate positional errors was developed on the foundation of sensor interface system to make use of the on-line shift function of industrial welding robot. Investigating the on-line shift function, we examine the quantitative relationship between the deviation from programmed path and the correction data transferred from personal computer to robot controller. The number of input parameters for weld seam tracking can be reduced by making the relationship between the deviation and the correction data during half weaving be the function of only cross time. With the results of weld seam tracking for the butt joint with V-groove and fillet joint of sheet metal, good performance was implemented. By developing the sensor interface system to compensate the positional errors, industrial welding robot can be expected to contribute to the promotion of welding automation.

  • PDF

Vocabulary Recognition Post-Processing System using Phoneme Similarity Error Correction (음소 유사율 오류 보정을 이용한 어휘 인식 후처리 시스템)

  • Ahn, Chan-Shik;Oh, Sang-Yeob
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.7
    • /
    • pp.83-90
    • /
    • 2010
  • In vocabulary recognition system has reduce recognition rate unrecognized error cause of similar phoneme recognition and due to provided inaccurate vocabulary. Input of inaccurate vocabulary by feature extraction case of recognition by appear result of unrecognized or similar phoneme recognized. Also can't feature extraction properly when phoneme recognition is similar phoneme recognition. In this paper propose vocabulary recognition post-process error correction system using phoneme likelihood based on phoneme feature. Phoneme likelihood is monophone training phoneme data by find out using MFCC and LPC feature extraction method. Similar phoneme is induced able to recognition of accurate phoneme due to inaccurate vocabulary provided unrecognized reduced error rate. Find out error correction using phoneme likelihood and confidence when vocabulary recognition perform error correction for error proved vocabulary. System performance comparison as a result of recognition improve represent MFCC 7.5%, LPC 5.3% by system using error pattern and system using semantic.

Simulation and Experimentals of a Bi-Directional Converter with Input PFC on SRM System

  • Maged Maged N.F.
    • Journal of Power Electronics
    • /
    • v.6 no.2
    • /
    • pp.121-130
    • /
    • 2006
  • This paper presents the performance and efficiency of a drive system incorporating a switched-reluctance motor (SRM) with input power factor correction (PFC). The proposed system consists of a PFC, bi-directional converter, an inverter, and a SRM operating as based voltage source drives (VSD). First, theoretical analysis is made for each identified mode of operation in the drive system. This is followed by comparing the performance of the SRM drive system with and without a PFC circuit. The losses are also calculated for both systems and overall efficiency. Experimental results are presented to prove the theoretical analysis.

Performance Improvement of Asynchronous Mass Memory Module Using Error Correction Code (에러 보정 코드를 이용한 비동기용 대용량 메모리 모듈의 성능 향상)

  • Ahn, Jae Hyun;Yang, Oh;Yeon, Jun Sang
    • Journal of the Semiconductor & Display Technology
    • /
    • v.19 no.3
    • /
    • pp.112-117
    • /
    • 2020
  • NAND flash memory is a non-volatile memory that retains stored data even without power supply. Internal memory used as a data storage device and solid-state drive (SSD) is used in portable devices such as smartphones and digital cameras. However, NAND flash memory carries the risk of electric shock, which can cause errors during read/write operations, so use error correction codes to ensure reliability. It efficiently recovers bad block information, which is a defect in NAND flash memory. BBT (Bad Block Table) is configured to manage data to increase stability, and as a result of experimenting with the error correction code algorithm, the bit error rate per page unit of 4Mbytes memory was on average 0ppm, and 100ppm without error correction code. Through the error correction code algorithm, data stability and reliability can be improved.

Development of nationwide amplification map of response spectrum for Japan based on station correction factors

  • Maruyama, Yoshihisa;Sakemoto, Masaki
    • Earthquakes and Structures
    • /
    • v.13 no.1
    • /
    • pp.17-27
    • /
    • 2017
  • In this study, the characteristics of site amplification at seismic observation stations in Japan were estimated using the attenuation relationship of each station's response spectrum. Ground motion records observed after 32 earthquakes were employed to construct the attenuation relationship. The station correction factor at each KiK-net station was compared to the transfer functions between the base rock and the surface. For each station, the plot of the station correction factor versus the period was similar in shape to the graphs of the transfer function (amplitude ratio versus period). Therefore, the station correction factors are effective for evaluating site amplifications considering the period of ground shaking. In addition, the station correction factors were evaluated with respect to the average shear wave velocities using a geographic information system (GIS) dataset. Lastly, the site amplifications for specific periods were estimated throughout Japan.

Direct Time-domain Phase Correction of Dual-comb Interferograms for Comb-resolved Spectroscopy

  • Lee, Joohyung
    • Current Optics and Photonics
    • /
    • v.5 no.3
    • /
    • pp.289-297
    • /
    • 2021
  • We describe a comb-mode resolving spectroscopic technique by direct time-domain phase correction of unstable interferograms obtained from loosely locked two femtosecond lasers. A low-cost continuous wave laser and conventional repetition rate stabilization method were exploited for locking carrier and envelope phase of interferograms, respectively. We intentionally set the servo control at low bandwidth, resulting in severe interferograms' fluctuation to demonstrate the capability of the proposed correction method. The envelope phase of each interferogram was estimated by a quadratic fit of carrier peaks to correct timing fluctuation of interferograms in the time domain. After envelope phase correction on individual interferograms, we successfully demonstrated 1 Hz linewidth of RF comb-mode over 200 GHz optical spectral-bandwidth with 10-times signal-to-noise ratio (SNR) enhancement compared to the spectrum without correction. Besides, the group delay difference between two femtosecond pulses is successfully estimated through a linear slope of phase information.