• Title/Summary/Keyword: Correction Interpolation

Search Result 123, Processing Time 0.022 seconds

A Motion-Adaptive De-interlacing Method using Motion Compensated Interpolation (움직임 보상을 통한 움직임 기반의 De-interlacing 기법)

  • 이성규;강석규;이동호
    • Proceedings of the IEEK Conference
    • /
    • 2001.09a
    • /
    • pp.371-374
    • /
    • 2001
  • 본 논문에서는 움직임 보상을 이용한 Motion-Adaptive De-interlacing Method를 제안 한다. 정확한 움직임 추정을 위해서 Pre-filter로서 EBMF(Edge Based Median Filter)를 사용하며 새로운 Block Matching Method를 제안한다. Temporal Filter로서 Motion Missing Error를 제거하기 위해 입력 영상의 움직임 영역에 따라 각각 다른 임계 값을 적용하는 AMPDF(Adaptive Minimum Pixel Difference Filter)를 적용하였으며 MMD(Maximum Motion Detection)와 SAD(Sum of Difference)를 이용하여 빠른 움직임 영역에서 화질을 향상시켰다. 최종적으로 잘못된 움직임 보상에 기인하는 화질의 열화를 방지하기 위한 Motion Correction Filter를 제안한다.

  • PDF

Correction of Antenna Position for Projection Center Coordinates by Kinematic DGPS-Positioning (동적 DGPS 측위에 의한 투영중심좌표 결정을 위한 수신기 위치의 보간)

  • 이종출;문두열;신상철
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.15 no.2
    • /
    • pp.165-173
    • /
    • 1997
  • The combined bundle block adjustment with projection center coordinates determined by kinematic DGPS-positioning has reached a high level of accuracy. Standard deviations of the ground coordinates of $\pm{10cm}$ or even better can be reached. On this accuracy level also smaller error components are becoming more important. One major point of this is the interpolation of the projection centers as a function of time between the GPS-antenna locations. A just linear interpolation is not respecting the not linear movement of the aircraft. Based on a least squares polynomial fitting the aircraft maneuver can be estimated more accurate and blunders of the GPS-positions caused by loss of satellite and cycle slips are determinable. The interpolation with a time interval of 3sec in the study area RHEINKAMP is quite different to the interpolation with a time interval of 6-7sec in the study area MAAS. The GPS-positions of the study area are identified as blunders based on a local polynomial regression. This cannot be neglected for precise block adjustment.

  • PDF

A Study for Improving the Positioning Accuracy of DGPS Based on Multi-Reference Stations by Applying Exponential Modeling on Pseudorange Corrections

  • Kim, Koon-Tack;Park, Kwan-Dong;Lee, Eunsung;Heo, Moon Beom
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.2 no.1
    • /
    • pp.9-17
    • /
    • 2013
  • In this paper, a pseudorange correction regeneration algorithm was developed to improve the positioning accuracy of DGPS using multi-reference stations, and the optimal minimum number of reference sites was determined by trying out different numbers of reference. This research was conducted using from two to five sites, and positioning errors of less than 1 m were obtained when pseudorange corrections are collected from at least four reference stations and interpolated as the pseudorange correction at the rover. After determining the optimal minimum number of reference stations, the pseudorange correction regeneration algorithm developed was tested by comparison with the performance of other algorithms. Our approach was developed based on an exponential model. If pseudorange corrections are regenerated using an exponential model, the effect of a small difference in the baseline distance can be enlarged. Therefore, weights can be applied sensitively even when the baseline distance differs by a small amount. Also weights on the baseline distance were applied differently by assigning weights depending on the difference of the longest and shortest baselines. Through this method, the positioning accuracy improved by 19% compared to the result of previous studies.

Correction of Accelerogram in Frequency Domain (주파수영역에서의 가속도 기록 보정)

  • Park, Chang Ho;Lee, Dong Guen
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.12 no.4
    • /
    • pp.71-79
    • /
    • 1992
  • In general, the accelerogram of earthquake ground motion or the accelerogram obtained from dynamic tests contain various errors. In these errors of the accelerograms, there are instrumental errors(magnitude and phase distortion) due to the response characteristics of accelerometer and the digitizing error concentrated in low and high frequency components and random errors. Then, these errors may be detrimental to the results of data processing and dynamic analysis. An efficient method which can correct the errors of the accelerogram is proposed in this study. The correction of errors can be accomplished through four steps as followes ; 1) using an interpolation method a data form appropriate to the error correction is prepared, 2) low and high frequency errors of the accelerogram are removed by band-pass filter between prescribed frequency limits, 3) instrumental errors are corrected using dynamic equilibrium equation of the accelerometer, 4) velocity and displacement are obtained by integrating corrected accelerogram. Presently, infinite impulse response(IIR) filter and finite impulse response (FIR) filter are generally used as band-pass filter. In the proposed error correction procedure, the deficiencies of FIR filter and IIR filter are reduced and, using the properties of the differentiation and the integration of Fourier transform, the accuracy of instrument correction and integration is improved.

  • PDF

Development of bias correction scheme for high resolution precipitation forecast (고해상도 강수량 수치예보에 대한 편의 보정 기법 개발)

  • Uranchimeg, Sumiya;Kim, Ji-Sung;Kim, Kyu-Ho;Kwon, Hyun-Han
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.7
    • /
    • pp.575-584
    • /
    • 2018
  • An increase in heavy rainfall and floods have been observed over South Korea due to recent abnormal weather. In this perspective, the high-resolution weather forecasts have been widely used to facilitate flood management. However, these models are known to be biased due to initial conditions and topographical conditions in the process of model building. Theretofore, a bias correction scheme is largely applied for the practical use of the prediction to flood management. This study introduces a new mean field bias correction (MFBC) approach for the high-resolution numerical rainfall products, which is based on a Bayesian Kriging model to combine an interpolation technique and MFBC approach for spatial representation of the error. The results showed that the proposed method can reliably estimate the bias correction factor over ungauged area with an improvement in the reduction of errors. Moreover, it can be seen that the bias corrected rainfall forecasts could be used up to 72 hours ahead with a relatively high accuracy.

Correlation between the Position Accuracy of the Network RTK Rover and Quality Indicator of Various Performance Analysis Method (Network RTK 품질 분석 방법론별 성능 지표와 사용자 항법 정확도의 상관성)

  • Lim, Cheol-soon;Park, Byung-woon;Heo, Moon-beom
    • Journal of Advanced Navigation Technology
    • /
    • v.22 no.5
    • /
    • pp.375-383
    • /
    • 2018
  • In order to apply the Network RTK (real time kinematics) technology, which has been used for positioning of stationary points, to the navigation of vehicles, its infrastructure should provide correction data with a quality indicator that can show the expected accuracy in real time. In this paper, we analyzed various indicator generation algorithms such as I95 (ionospheric index 95) / G95 (geodetic index 95), SBI (semivariance based index) and RIU (residual interpolation uncertainty). We also applied them to the raw observables from the reference stations of National Geographic Information Institute and VRS (virtual reference station) users, and then examined its feasibility to be used as a real-time performance index of the Network RTK rover. 24 hour data analysis shows that the RIU index, which can represent the non-linearty of the correction, has the strongest correlation with the Network RTK rover accuracy. Therefore, RIU index is expected to be used as a real-time performance index of the Network RTK rover.

A Correction of the Keystone Distortion Using the Bilinear Interpolation Method in 3D Stereoscopic images (3차원 입체영상에서 양선형 보간법을 이용한 키스톤 왜곡 보정)

  • Lee, Seung-Woo;Song, Young-Jun;Kim, Nam
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2006.11a
    • /
    • pp.524-527
    • /
    • 2006
  • This paper discusses a method to efficiently remove the keystone distortion in images. The keystone distortion which generated during 2D image aquisition to realize 3D stereoscopic images is removed by the bilinear interpolation method. Usually, the keystone distortion in 2D images can remove by the optical equipment but the image processing is more effective than the optical equipment in consideration of efficiency or simplicity of the works. This method can be realized 3D stereoscopic image without the distortion.

  • PDF

Error and Correction Schemes of Control Volume Radiative Energy with the Discrete Ordinates Interpolation Method (제어체적 복사열정산을 위한 구분종좌표보간법의 오차 및 보정방안)

  • Cha, Ho-Jin;Song, Tae-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.6
    • /
    • pp.796-803
    • /
    • 2003
  • The discrete ordinates interpolation method (DOIM) has shown good accuracy and versatile applicability for the radiation $problems^{(1,2)}$. The DOIM is a nonconservative method in that the intensity and temperature are computed only at grid points without considering control volumes. However, when the DOIM is used together with a finite volume algorithm such as $SIMPLER^{(3)}$, intensities at the control surfaces need to be calculated. For this reason, a 'quadratic' and a 'decoration' schemes are proposed and examined. They are applied to two kinds of radiation problem in one-dimensional geometries. In one problem, the intensity and temperature are calculated while the radiative heat source is given, and in the other, the intensity and the radiative heat source are computed with a given temperature field. The quadratic and the decoration schemes show very successful results. The quadratic scheme gives especially accurate results so that further decoration may not be needed. It is recommended that the quadratic and the decoration schemes may be used together, or, one of them may be applied for control volume radiative energy balance.

A Hybrid Correction Technique of Missing Load Data Based on Time Series Analysis

  • Lee, Chan-Joo;Park, Jong-Bae;Lee, Jae-Yong;Shin, Joong-Rin;Lee, Chang-Ho
    • KIEE International Transactions on Power Engineering
    • /
    • v.4A no.4
    • /
    • pp.254-261
    • /
    • 2004
  • Traditionally, electrical power systems had formed the vertically integrated industry structures based on the economics of scale. However, power systems have been recently reformed to increase their energy efficiency. According to these trends, the Korean power industry underwent partial reorganization and competition in the generation market was initiated in 2001. In competitive electric markets, accurate load data is one of the most important issues to maintaining flexibility in the electric markets as well as reliability in the power systems. In practice, the measuring load data can be uncertain because of mechanical trouble, communication jamming, and other issues. To obtain reliable load data, an efficient evaluation technique to adjust the missing load data is required. This paper analyzes the load pattern of historical real data and then the tuned ARIMA (Autoregressive Integrated Moving Average), PCHIP (Piecewise Cubic Interpolation) and Branch & Bound method are applied to seek the missing parameters. The proposed method is tested under a variety of conditions and also tested against historical measured data from the Korea Energy Management Corporation (KEMCO).

Measuring Angular Speed and Angular Acceleration for Automotive Windshield Wiper Pivot (자동차 와이퍼 피봇의 각속도 및 각가속도 측정)

  • Lee Byoungsoo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.4
    • /
    • pp.58-65
    • /
    • 2005
  • A method measuring angular speed and estimating angular acceleration of an automotive wind shield wiper pivot with limited resources has been proposed. Limited resources refer to the fact that processes cannot be operated in real-time with a regular notebook running a Microsoft Windows. Also, they refer to the fact that data acquisition cards have only two general purpose counters as many generic cards do. An optical incremental encoder has been employed for measuring angular motion. To measure the angular speed of the pivot, periods for the encoder's output pulses have been measured as the speed is related to the reciprocal of the period. Since only information acquired from one counter channel is the magnitude of the angular speed, sign correction is necessary. Also the information for the exact time when a pivot passes left and right dead points is also missing and the situation is inherent to the hardware setup. To find out the zero-crossing time of the angular speed, a linear interpolation technique has been employed. Lastly, to overcome the imperfection of the mechanical encoders, the angular speed has been curve fitted to a spline. Angular acceleration can be obtained by a differentiation of the angular speed.