• 제목/요약/키워드: Coronary circulation

검색결과 144건 처리시간 0.022초

Drug-Coated Balloon Treatment for De Novo Coronary Lesions: Current Status and Future Perspectives

  • Ae-Young Her;Eun-Seok Shin
    • Korean Circulation Journal
    • /
    • 제54권9호
    • /
    • pp.519-533
    • /
    • 2024
  • The outstanding development in contemporary medicine, highlighted by percutaneous coronary intervention (PCI), was achieved through the adoption of drug-eluting stents (DESs). Although DES is the established therapy for patients undergoing PCI for de novo coronary artery disease (CAD), their drawbacks include restenosis, stent thrombosis, and the requirement for dual antiplatelet therapy (DAPT) with an uncertain duration regarding its optimality. Drug-coated balloon (DCB) treatment leaves nothing behind on the vessel wall, providing the benefit of avoiding stent thrombosis and not necessitating obligatory extended DAPT. After optimizing coronary blood flow, DCB treatment delivers an anti-proliferative drug directly coated on a balloon. Although more evidence is needed for the application of DCB treatment in de novo coronary lesions, recent studies suggest the safety and effectiveness of DCB treatment for diverse conditions including small and large vessel diseases, complex lesions like bifurcation lesions or diffuse or multivessel diseases, chronic total occlusion lesions, acute myocardial infarctions, patients at high risk of bleeding, and beyond. Consequently, we will review the current therapeutic choices for managing de novo CAD using DCB and assess the evidence supporting their concurrent application. Additionally, it aims to discuss future important perspectives.

협착된 관상동맥에 시술된 스텐트형상이 벽면 전단응력에 미치는 영향 (Effects of Stenting Shapes on the Wall Shear Stress in the Angulated Coronary Stenosis)

  • 조민태;서상호;유상신;권혁문
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집E
    • /
    • pp.219-222
    • /
    • 2001
  • The objective of the present study is to evaluate the effects of the stenting shapes on flow velocity and wall shear stress in angulated coronary stenosis by computer simulation. Coronary angiogram and Doppler ultrasound measurement in the patients with angulated coronary stenosis were obtained. Inlet wave velocity distribution obtained from in vivo intracoronary Doppler data was used for the numerical simulation. Spatial pattern of blood flow velocity and recirculation area were drawn through out the selected segment of coronary models. Wall shear stresses in the intracoronary stent models were calculated from three-dimensional computer simulation. A negative shear stress region, which is consistent with re-circulation area on flow pattern, was noted on the inner wall of post-stenotic area of pre-stenting model. The negative shear stress was disappeared after stenting. Shear stress in the post-stenting model was markedly reduced up to about two orders of magnitude compared to that of the pre-stenting model.

  • PDF

Flow Visualization in Realistic Arterial Bypass Graft Model

  • Singh, Megha;Shin, Se-Hyun
    • International Journal of Vascular Biomedical Engineering
    • /
    • 제3권1호
    • /
    • pp.1-5
    • /
    • 2005
  • Background: Coronary atherosclerosis artery disease is the leading cause of morbidity and mortality. Coronary artery bypass grafting (CABG) which utilizes the saphenous vein graft, has helped in alleviating the suffering of these patients. Newer techniques are being developed to improve upon the techniques. Still there is significant number of failures, leading to re-grafting or re-vascularization. Some studies have helped in identifying the high and low shear stress regions. Further studies based on their realistic models are required. Material, methods and results: we developed the realistic model of fully blocked right coronary with bypass graft placed at angle of $5^0$ with curvature similar to that of artery. Pulsatile flow of birefringent solution through this model by polarized light was visualized. The images of complete flow field in the model were recorded and analyzed. Regions of high flow disturbances which are prone to further changes are identified. Existence of recirculation in the blocked coronary may initiate new blood-tissue interactions deleterious to bypass graft. Conclusion: Our study shows that by selecting the procedure to place bypass graft at minimum angle with curvature similar to that of artery and smooth sutures may improve the life span of the graft. This study also identified that coronary blocked regions contributing by recirculation flow at the proximal and distal regions of bypass which may require further studies.

  • PDF