• Title/Summary/Keyword: Corn production

Search Result 1,173, Processing Time 0.033 seconds

Characterization of Crop Residue-Derived Biochars Produced by Field Scale Biomass Pyrolyzer

  • Jung, Won-K.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.1
    • /
    • pp.1-7
    • /
    • 2011
  • Application of biochar to soils is proposed as a significant, long-term, sink for atmospheric carbon dioxide in terrestrial ecosystems. In addition to reducing emissions and increasing the sequestration of carbon, production of biochar and its application to soils will contribute improve soil quality and crop productivity. Objectives were i) to evaluate biochar productivity from crop residues using a low-cost field scale mobile pyrolyzer and ii) to evaluate characteristics of feedstocks and biochars from locally collected crop residues. Pyrolysis experiments were performed in a reactor operated at $400-500^{\circ}C$ for 3-4 hours using biomass samples of post-harvest residues of corn (Zea mays L.), cotton (Gossypium spp.), rice (Oryza sativa L.), sorghum (Sorghum bicolor L.) and wheat (Triticum aestivum L.). Feedstocks differed, but average conversion to biochar was 23%. Carbon content of biomass feedstock and biochar samples were 445 g $kg^{-1}$ and 597 g $kg^{-1}$, respectively. Total carbon content of biochar samples was 34% higher than its feedstock samples. Significant increases were found in P, K, Ca, Mg, and micro-nutrients contents between feedstock and biochar samples. Biochar from corn stems and rice hulls can sequester by 60% and 49% of the initial carbon input into biochar respectively when biochar is incorporated into the soils. Pyrolysis conversion of corn and rice residues sequestered significant amounts of carbon as biochar which has further environmental and production benefits when applied to soils. Field experiment with crop residue biochar will be investigated the stability of biochars to show long-term carbon sequestration and environmental influences to the cropping systems.

Effect of Additives and Fermentation Periods on Chemical Composition and In situ Digestion Kinetics of Mott Grass (Pennisetum purpureum) Silage

  • Nisa, Mahr-un;Touqir, N.A.;Sarwar, M.;Khan, M. Ajmal;Akhtar, Mumtaz
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.6
    • /
    • pp.812-815
    • /
    • 2005
  • This study was conducted to see the influence of additives and fermentation periods on Mott grass silage (MGS) characteristics, its chemical composition and to compare the digestion kinetics of Mott grass (MG) and MGS in Nili buffaloes. Mott grass chopped with a locally manufactured chopper was ensiled using two additives, cane molasses and crushed corn grains each at 2, 4 and 6% of forage DM for 30 and 40 days in laboratory silos. The pH, lactic acid concentration, dry matter (DM), crude protein and fiber fractions of MGS were not affected by the type or level of additive and fermentation periods. The non-significant pH lactic acid concentration, and chemical composition of MGS indicated that the both molasses and crushed corn were utilized at similar rate for the growth of lactic acid bacteria and production of organic acids. The MG ensiled with molasses at 2% of fodder DM for 30 days was screened out for in situ digestion kinetics in Nili buffaloes. Ruminal DM and neutral detergent fiber (NDF) degradabilities of MGS were significantly (p<0.05) higher than that of MG. The DM and NDF rate of degradation, lag time and extent of degradation was nonsignificant between MGS and MG. The higher ruminal degradation of DM and NDF of MGS than MG was probably a reflection of fermentation of MG during ensilation that improved its degradability by improving the availability of easily degradable structural polysaccharides to ruminal microbial population. The results in the present study have indicated that MG ensiled with either 2% molasses or 2% crushed corn for 30 days has better nutritive value for buffalo.

Effect of Replacing Corn Silage with Whole Crop Rice Silage in Total Mixed Ration on Intake, Milk Yield and Its Composition in Holsteins

  • Ki, K.S.;Khan, M.A.;Lee, W.S.;Lee, H.J.;Kim, S.B.;Yang, S.H.;Baek, K.S.;Kim, J.G.;Kim, H.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.4
    • /
    • pp.516-519
    • /
    • 2009
  • This study was conducted to investigate the effects of replacing whole crop corn silage (WCCS) with whole crop rice silage (WCRS) in the total mixed ration (TMR) on nutrient intake, milk yield and its composition in Holstein cows. The Chucheong rice variety (Oryza sativa L. Japonica) and corn (Pioneer 32 P75) were harvested at yellow-ripe stage and were ensiled in round bales and in trench silos, respectively. Two TMR containing either WCCS or WCRS were prepared. These diets were randomly assigned to 16 midlactating Holstein cows (8 cows per treatment) and were fed for 120 days. The first 20 days were used for dietary adaptation and for the next 100 days daily feed intake, milk yield and its composition were recorded. The pH, lactic acid, NDF, ADF, CP, Ca and P contents were similar in WCRS and WCCS. The DM, ash and EE contents of WCRS were greater compared with WCCS. Nutrient (DM, NDF, TDN and CP) intakes were similar in cows fed WCCS- and WCRS-based TMR. Daily and 4% fat corrected milk yield were not affected by the treatments. Milk composition (percent milk fat, protein, lactose and total solids) was similar in cows fed either WCCS- or WCRSbased TMR. The concentration of milk urea N was greater in cows fed WCRS-based TMR than those fed WCCS-based TMR. In conclusion, round-baled WCRS can replace WCCS in the diet of mid- to late-lactating Holsteins without any deleterious effects on feed consumption, milk yield and its composition. The present findings raise the possibility that WCRS can be used as an alternative roughage source in the diets of dairy cows in countries with surplus rice production.

Identification and Antimicrobial Activity Detection of Lactic Acid Bacteria Isolated from Corn Stover Silage

  • Li, Dongxia;Ni, Kuikui;Pang, Huili;Wang, Yanping;Cai, Yimin;Jin, Qingsheng
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.5
    • /
    • pp.620-631
    • /
    • 2015
  • A total of 59 lactic acid bacteria (LAB) strains were isolated from corn stover silage. According to phenotypic and chemotaxonomic characteristics, 16S ribosomal DNA (rDNA) sequences and recA gene polymerase chain reaction amplification, these LAB isolates were identified as five species: Lactobacillus (L.) plantarum subsp. plantarum, Pediococcus pentosaceus, Enterococcus mundtii, Weissella cibaria and Leuconostoc pseudomesenteroides, respectively. Those strains were also screened for antimicrobial activity using a dual-culture agar plate assay. Based on excluding the effects of organic acids and hydrogen peroxide, two L. plantarum subsp. plantarum strains ZZU 203 and 204, which strongly inhibited Salmonella enterica ATCC $43971^T$, Micrococcus luteus ATCC $4698^T$ and Escherichia coli ATCC $11775^T$ were selected for further research on sensitivity of the antimicrobial substance to heat, pH and protease. Cell-free culture supernatants of the two strains exhibited strong heat stability (60 min at $100^{\circ}C$), but the antimicrobial activity was eliminated after treatment at $121^{\circ}C$ for 15 min. The antimicrobial substance remained active under acidic condition (pH 2.0 to 6.0), but became inactive under neutral and alkaline condition (pH 7.0 to 9.0). In addition, the antimicrobial activities of these two strains decreased remarkably after digestion by protease K. These results preliminarily suggest that the desirable antimicrobial activity of strains ZZU 203 and 204 is the result of the production of a bacteriocin-like substance, and these two strains with antimicrobial activity could be used as silage additives to inhibit proliferation of unwanted microorganism during ensiling and preserve nutrients of silage. The nature of the antimicrobial substances is being investigated in our laboratory.

Environmental Impacts on Concentrate Feed Supply Systems for Japanese Domestic Livestock Industry as Evaluated by a Life-cycle Assessment Method

  • Kaku, K.;Ogino, A.;Ikeguchi, A.;Osada, T.;Shimada, K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.7
    • /
    • pp.1022-1028
    • /
    • 2005
  • The objectives of this study were to evaluate and compare the environmental load of two different concentrate feed supply systems to the Japanese domestic livestock industry using the Life-cycle Assessment (LCA) method. The current system was defined as that requiring 11.469 million tons of corn imported from the US by sea transport and supplied as concentrate feed to the Japanese domestic livestock industry. The new system proposed by Kaku et al. in 2004 was defined as where 802,830 tons of US imported corn would not be planted in US and would be replaced by barley planted in 278 thousand ha of Japanese domestic land left fallow for the past year. In this case, 909,000 tons of domestic harvest barley would have been supplied as concentrate feed to the Japanese domestic livestock industry in 2000. The activities taken into account within the two system boundaries were three stages: concentrate feed production, feed transportation and gas emission from the soil by chemical fertilizer. Finished compost was regarded as organic fertilizer and was put instead of chemical fertilizers within the system boundary. Adoption of this new concentrate feed supply system by the Japanese domestic livestock industry could reduce 78,462 tons $CO_2$-equivalents of global warming potential, 347 tons $SO_2$-equivalents of acidification potential, 54 tons $PO_4$-equivalents of eutrophication potential and 0.842 million GJ as energy consumption below 2,000 levels. This LCA study comparing two Japanese domestic livestock concentrate feed supply systems showed that the stage of feed transport contributed most to global warming and the stage of emission from the soil contributed most to acidification and eutrophication. The Japanese domestic livestock industry could participate in emissions trading with $CO_2$-equivalents reduced by shifting from some imported US corn as a concentrate feed to domestic barley planted in land left fallow. In that case the Japanese government could launch emissions trading in accordance with Kyoto Protocol in the future.

Agronomic Characteristics and Yield of Silage Corn Hybrids 'Cap 444NG' (사일리지용 옥수수 'Cap 444NG'의 생육특성 및 수량성)

  • Ji, Hee-Chung;Kim, Meing-Jooung;Lee, Sang-Hyun;Choi, Gi-Jun;Kim, Ki-Yong;Park, Hyung-Su;Kim, Won-Ho
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.32 no.1
    • /
    • pp.9-14
    • /
    • 2012
  • This experiment was carried out to know adaptability, forage production and quality of corn hybrid for silage at three regions during 2007 to 2008. Among agronomic characteristics, 'CAP444NG' hybrid was somewhat strong for good stay green and higher stem height as 294cm. The fresh and dry matter yield of 'CAP444NG' hybrid were the highest 61,111 kg/ha and 20,635 kg/ha, respectively. The crude protein of 'CAP444NG' hybrid was somewhat higher than other hybrids as 7.9%. The result of this study indicated that 'CAP444NG' hybrid could be recommended as having good characters according to forage production and stay green and for silage in Korea.

Occurrence of severe soybean-sprout rot caused by Pythium deliense in the recirculated production system

  • Yun, Sung-Chul
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.92.2-93
    • /
    • 2003
  • Severe soybean-sprout rot was found at the mass productive factory in 2000 and 2001 and it caused 10-20% loss of the production. Pythium sp. was isolated almost 90% by potato dextrose agar from rotted root and hypocotylsof the sprouts. And the pathogencity tests using test tubes with 2% water agar and small containers (30 ${\times}$ 30 ${\times}$ 50 cm, WxLxH) cultivation were shown a similar rot on roots and hypocotyls. The fungal mycelium grew rapidly on the water agar and it prevented the seed germination. Density of the Pythium sp. in the recycled water system at the factory was periodically measured using a selective medium, corn meal agar with Pimaricin 10 mg, Rifampicin 10 mg, Ampicillin 100 mg per 1 liter in order to check the contamination of recycled water. After fitering step using 5 and 1 ml in the recycled system was applied and it was effectively controlled Pythium rot. The daily yield of sprout was stable and the occurrenceof Pythium in the recycled water was much less after filtering. The fungal isolates were identified as Pythium deliense Meurs based on various mycological characteristics on corn meal agar and sucrose-asparagine bentgrass leaf culture medium. P. deliens oogonia were spherical, smooth, 19-23 urn in diameter, and their stalk bending toward antheridia. Antheridia were straw hat-shaped, curred club-shaped, therminal or intercalary, monoclinous, occasionally diclinous, 12∼15 ${\times}$ 8∼11 um, 1(∼2) per oogonium.

  • PDF

Production of Inulin Fructotransferase (Depolymerizing) from Enterobacter sp. S45 (Enterobacter sp. S45에 의한 Inulin fructotransferase의 생산)

  • 강수일;김수일
    • Microbiology and Biotechnology Letters
    • /
    • v.21 no.1
    • /
    • pp.36-40
    • /
    • 1993
  • A bacterial strain, producing extracellular inulin fructotransferase which converts inulin into di-D-fructofuranose dianhydride (DFA) was isolated from soil and presumed as Enterobacter sp. The DFA isolated on Bio-gel P2 column was identified as DFA III by high performance liquid chromatography and $^13C-nmr$ spectroscopy. The enzyme production was induced by inulin and markedly enhanced by the addition of corn steep liquor and $NH_4H_2P0_4$ for nitrogen source. Under optimum condition, the enzyme activity in the culture broth reached at maximum, 0.22 unit/ml after cultivation for 72 hour.

  • PDF

Feasibility of Bioethanol Production from Cider Waste

  • Seluy, Lisandro G.;Comelli, Raul N.;Benzzo, Maria T.;Isla, Miguel A.
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.9
    • /
    • pp.1493-1501
    • /
    • 2018
  • Wastewater from cider factories (losses during transfers, products discarded due to quality policies, and products returned from the market) exhibits a Chemical Oxygen Demand greater than $170,000mg\;O_2/l$, mainly due to the ethanol content and carbohydrates that are added to obtain the finished product. These effluents can represent up to 10% of the volume of cider produced, and they must be treated to meet environmental regulations. In this work, a process was developed, based on alcoholic fermentation of the available carbohydrates present in ciders. The impact of inhibitors at different pH, size and reuse of inoculums and different nutrient supplementation on the ethanol yield were evaluated. The use of a 0.5 g/l yeast inoculum and corn steep water as the nutrient source allowed for depletion of the sugars in less than 48 h, which increased the content of ethanol to more than 70 g/l.

Characterization and Some Cultural Conditions of a Pullulanase Producing Aeromonas caviae No. S-76 (Pullulanase를 생산하는 Aeromonas caviae No.S-76의 특성과 배양조건)

  • 손천배;김명희;이명자
    • Microbiology and Biotechnology Letters
    • /
    • v.19 no.4
    • /
    • pp.315-318
    • /
    • 1991
  • - A bacterial strain No. S-76 which produced pullulanase powerfully was isolated frorn soil. The isolated bacterium was 0.4~$0.6\times 0.8$~1.4 $\mu\textrm{m}$ in size, gram negative, rods, motile and was identified as Aerornonas caviae by Bergey's manual of determinative bacteriology with various characteristics investigated. The highest yield of pullulanase of the strain was obtained by using the following medium: 1% pullulan, soluble starch or corn starch as a carbon sources and 0.5% yeast extract, peptone as nitrogen sources with an initial pH of 9.0. The optimal cutture conditions for production of pullulanase were at $32^{\circ}C$ for 2 days.

  • PDF