• 제목/요약/키워드: Coriolis-Phenomena

검색결과 8건 처리시간 0.026초

전향력에 의한 현상을 효과적으로 교육시킬 수 있는 실험 장치의 개발 (Development of Experimental Apparatus to Efficiently Educate the Phenomena by Coriolis Force)

  • 김은주;이상법;윤일희;이효녕
    • 한국지구과학회지
    • /
    • 제30권6호
    • /
    • pp.787-798
    • /
    • 2009
  • 지구과학 분야에서 대기와 해수의 운동을 이해하는 데 필수적인 개념인 전향력의 이해를 돕고자 전향력 실험장치를 개발하였다. 기존의 교과서에 제시된 전향력 실험 장치는 구슬을 내려 보내는 굴림대가 회전원판과 함께 회전하지 않으므로 구슬의 궤적을 이용하여 지구 위에서 전향력에 의해서 일어나는 대기나 해수의 운동을 바르게 설명할 수 없었다. 이러한 문제점을 개선하여 굴림대(빗면)를 원판에 부착하여 원판과 함께 회전하면서 구슬을 보낼 수 있는 새로운 실험 장치를 개발하였다. 개발한 장치와 기존의 장치를 사용하여 전향력 실험을 각각 실시하여 교과서의 실험 장치와 개발한 실험 장치의 특성을 비교하였다. 그 결과 교과서의 실험 장치는 구슬이 원판에 부딪히는 순간에 운동이 매끄럽지 못하여 구슬의 궤적을 분석하는 데 어려움이 있었던 반면에 개선된 실험 장치는 구슬의 궤적을 분석하기 쉬웠으며, 구슬의 속도를 다르게 할 수도 있어서 구슬의 속도가 다를 때 궤적을 서로 비교하는 것이 용이하였다.

회전하는 정사각단면의 $90^{\circ}$곡관내 난류유동에 관한 실험적 연구 (Measurement of turbulent flow characteristics of rotating square duct with a $90^{\circ}$ bend)

  • 이건휘;최영돈
    • 대한기계학회논문집
    • /
    • 제19권9호
    • /
    • pp.2223-2236
    • /
    • 1995
  • 0The fields of turbomachinery and electrical generators provide many examples of flow through rotating internal passages. At the practicing Reynolds number, most of the flow motion is three dimensional and highly turbulent. The proper understanding for the characteristics of these turbulent flow is necessary for the design of thermo-fluid machinery of a good efficiency. The flow characteristics in the rotating duct with curvature are very complex in practice due to the curvature and rotational effect of the duct. The understanding of the effect of the curvature on the structure and rotational effect of the duct. The understanding of the effect of the curvature on the structure of turbulence in the curved passage and the characteristics of the flow in a rotating radial straight channel have been well studied separately by many workers. But the combined effects of curvature and rotation on the flow have not been well understood inspite of the importance of the phenomena in the practical design process. In this study, the characteristics of a developing turbulent flow in a square sectioned 90.deg. bend rotating at a constant angular velocity are measured by using hot-wire anemometer to seize the rotational effects on the flow characteristics. As the results of this study, centrifugal forces associated with the curvature of the bend and Coriolis forces and centripetal forces associated with the rotational affect directly both the mean motion and the turbulent fluctuations.

The vertical spanning strip wall as a coupled rocking rigid body assembly

  • Sorrentino, Luigi;Masiani, Renato;Griffith, Michael C.
    • Structural Engineering and Mechanics
    • /
    • 제29권4호
    • /
    • pp.433-453
    • /
    • 2008
  • The equation of motion of a one way (vertical) spanning strip wall, as an assembly of two rigid bodies, is presented. Only one degree of freedom is needed to completely describe the wall response as the bodies are assumed to be perfectly rectangular and are allowed to rock but not to slide horizontally. Furthermore, no arching action occurs since vertical motion of the upper body is not restrained. Consequently, the equation of motion is nonlinear, with non constant coefficients and a Coriolis acceleration term. Phenomena associated with overburden to self weight ratio, motion triggering, impulsive energy dissipation, amplitude dependency of damping and period of vibration, and scale effect are discussed, contributing to a more complete understanding of experimental observations and to an estimation of system parameters based on the wall characteristics, such as intermediate hinge height and energy damping, necessary to perform nonlinear time history analyses. A comparison to a simple standing, or parapet, wall is developed in order to better highlight the characteristics of this assembly.

회전하는 터빈 블레이드 이차유로내 요철 배열이 열/물질전달에 미치는 영향 (Effect of Heat/Mass Transfer in the turbine blade internal passage with various rib arrangement)

  • 이세영;조형희
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집B
    • /
    • pp.22-29
    • /
    • 2001
  • The present study investigates the effects of various rib arrangements and rotating on heat/mass transfer in the cooling passage of gas turbine blades. The cooling passage has very complex flow structure, because of the rib turbulator and rotating effect. Experiments and numerical calculation are conducted to investigate the complex flow structures and heat transfer characteristics; the numerical computation is performed using a commercial code, FLUENT ver.5, to calculate the flow structures and the experiments are conducted to measure heat/mass transfer coefficients using a naphthalene sublimation technique. For the rotating duct tests, the test duct, which is the cross section of is $20mm\times40mm$ (the hydraulic diameter, $D_h$, of 26.7 mm, has two-pass with $180^{\circ}$ turning and the rectangular ribs on the wall. The rib angle of attack is $70^{\circ}$ and the maximum radius of rotation is $21.63D_h$. The partition wall has 10 mm thickness, which is 0.5 times to the channel width, and the distance between the tip of the partition wall and the outer wall of the turning region is 26.7 mm $(1D_h)$. The turning effect of duct flow makes the very complex flow structure including Dean type vortex and high turbulence, so that the heat/mass transfer increases in the turning region and at the entrance of the second pass. The Coriolis effect deflects the flow to the trailing surface, resulting in enhancement of the heat/mass transfer on the trailing surface and reduction on the leading surface in the first pass. However, the opposite phenomena are observed in the second pass. The each rib arrangement makes different secondary flow patterns. The complex heat/mass transfer characteristics are observed by the combined effects of the rib arrangements, duct rotation and flow turning.

  • PDF

회전하는 금속복합재료 혼합적층 원통쉘의 진동해석 (Vibration Analysis of the Rotating Hybrid Cylindrical Shells Laminated with Metal and Composite)

  • 이영신;김영환
    • 대한기계학회논문집A
    • /
    • 제20권3호
    • /
    • pp.968-977
    • /
    • 1996
  • The linear/nonlinear vibration response of the rotating hybrid cylindrical shell with simply supported boundary condition is studied. The Ritz-Galerkin method is applied to obtain the nonlinear frequency equation, which excludes in-plane and rotatory inertia but includes bending stretching coupling terms. The bifurcation phenomena for the linear frequency and the frequency ratio(nonlinear/linear frequency ratio) are presented. The hybrid cylindrical shells are composed of composite(GFRP, CFRP) metal(aluminium, steel) with symmetric and antisymmetric stacking sequence. The effects of the Coriolis and centrifugal force are considered The results also present the effects of length-to- radies ratio, radius-to-thickness ratio, the circumferential wave number, the stacking sequence, the material property, the initial excitation amplitude and the rotating speed. The present linear frequency results are compared with those of the available literature.

Moving reactor model for the MULTID components of the system thermal-hydraulic analysis code MARS-KS

  • Hyungjoo Seo;Moon Hee Choi;Sang Wook Park;Geon Woo Kim;Hyoung Kyu Cho;Bub Dong Chung
    • Nuclear Engineering and Technology
    • /
    • 제54권11호
    • /
    • pp.4373-4391
    • /
    • 2022
  • Marine reactor systems experience platform movement, and therefore, the system thermal-hydraulic analysis code needs to reflect the motion effect on the fluid to evaluate reactor safety. A moving reactor model for MARS-KS was developed to simulate the hydrodynamic phenomena in the reactor under motion conditions; however, its applicability does not cover the MULTID component used in multidimensional flow analyses. In this study, a moving reactor model is implemented for the MULTID component to address the importance of multidimensional flow effects under dynamic motion. The concept of the volume connection is generalized to facilitate the handling of the junction of MULTID. Further, the accuracy in calculating the pressure head between volumes is enhanced to precisely evaluate the additional body force. Finally, the Coriolis force is modeled in the momentum equations in an acceleration form. The improvements are verified with conceptual problems; the modified model shows good agreement with the analytical solutions and the computational fluid dynamic (CFD) simulation results. Moreover, a simplified gravity-driven injection is simulated, and the model is validated against a ship flooding experiment. Throughout the verifications and validations, the model showed that the modification was well implemented to determine the capability of multidimensional flow analysis under ocean conditions.

곡관부를 가지는 내부 냉각유로에서 회전수 변화에 따른 열전달 및 유동 특성 ( I ) - 엇갈린 요철배열 덕트 - (Effects of Rotation Speed on Heat Transfer and Flow in a Coolant Passage with Turning Region ( I ) - Cross Ribbed Duct -)

  • 김경민;김윤영;이동호;조형희
    • 대한기계학회논문집B
    • /
    • 제29권6호
    • /
    • pp.737-746
    • /
    • 2005
  • The present study investigates heat/mass transfer and flow characteristics in a ribbed rotating passage with turning region. The duct has an aspect ratio (W/H) of 0.5 and a hydraulic diameter ($D_h$) of 26.67 mm. Rib turbulators are attached in the cross arrangement on the leading and trailing surfaces of the passage. The ribs have a rectangular cross section of $2\;mm\;(e){\times}\;mm\;(w)$ and an attack angle of $70^{\circ}$. The pitch-to-rib height ratio (p/e) is 7.5, and the rib height-to-hydraulic diameter ratio ($e/D_h$) is 0.075. The rotation number ranges from 0.0 to 0.20 while the Reynolds number is constant at 10,000. To verify the heat/mass transfer augmentation, internal flow structures are calculated for the same conditions using a commercial code FLUENT 6.1. The heat transfer data of the smooth duct for various Ro numbers agree well with not only the McAdams correlation but also the previous studies. The cross-rib turbulators significantly enhance heat/mass transfer in the passage by disturbing the main flow near the surfaces and generating one asymmetric cell of secondary flow skewing along the ribs. Because the secondary flow is induced in the first-pass and turning region, heat/mass transfer discrepancy is observed in the second-pass even for the stationary case. When the passage rotates, heat/mass transfer and flow phenomena change. Especially, the effect of rotation is more dominant than the effect of the ribs at the higher rotation number in the upstream of the second-pass.

항내(港內) 장주기파(長週期波) 해석(解析)을 위한 2차원(二次元) 부정류(不定流)의 수학적(數學的) 모형(模型) (A Mathematical Modeling of Two-Dimensional Unsteady Flow for Long Waves in a Harbor)

  • 이종태;이원환
    • 대한토목학회논문집
    • /
    • 제3권1호
    • /
    • pp.13-24
    • /
    • 1983
  • 장주기파(長週期波)에 의한 항내(港內)의 반응(反應)을 예측(豫測)하기 위하여 비선형(非線型) 편미분방정식(偏微分方程式)으로 표현(表現)되는 2차원(二次元) 부정류(不定流)의 운동방정식(運動方程式)과 연속방정식(連續方程式)을 확정(確定)하고, 이 식(式)들에 Abbott의 Implicit 형(型) 차분형(差分型)을 적용(適用)하여 유한(有限) 차분방정식(差分方程式)의 형태(形態)로 유도(誘導)한 후(後), double sweep 알고리즘에 의하여 해석(解析)하는 수학적(數學的) 모형(模型)을 개발(開發)하였다. 본(本) 모형(模型)은 임의(任意)의 파형(波形), 풍속(風速)과 수심(水深), 위도(緯度) 등(等)을 입력자료(入力資料)로 하여 임의(任意)의 지형(地形)을 가진 항내(港內)에서의 반응(反應)을 해석(解析)할 수 있도록 설계(設計)되었다. 특(特)히 파향(波向), 이송항(移送項), 항입구(港入口)로 되돌아 나오는 에너지의 방사현상(放射現象) 등(等)을 수치해석적(數値解析的)으로 처리(處理)하는 수법(手法)의 개발(開發)에 관(關)하여 연구(硏究)하였다. 본(本) 모형(模型)에 의한 해석결과치(解析結果値)는 1차원(次元) 및 2 차원(次元) 정진동(靜振動)(seiche) 수치실험(數値實驗)을 통(通)하여 검정(檢定)하였으며, Ippen과 Goda의 이론해석치(理論解析値) 및 실험결과치(實驗結果値)와 비교(比較)하였다.

  • PDF