• Title/Summary/Keyword: Cores

Search Result 1,538, Processing Time 0.03 seconds

Optimization of Process Variables for Insulation Coating of Conductive Particles by Response Surface Methodology (반응표면분석법을 이용한 전도성물질의 절연코팅 프로세스의 최적화)

  • Sim, Chol-Ho
    • Korean Chemical Engineering Research
    • /
    • v.54 no.1
    • /
    • pp.44-51
    • /
    • 2016
  • The powder core, conventionally fabricated from iron particles coated with insulator, showed large eddy current loss under high frequency, because of small specific resistance. To overcome the eddy current loss, the increase in the specific resistance of powder cores was needed. In this study, copper oxide coating onto electrically conductive iron particles was performed using a planetary ball mill to increase the specific resistance. Coating factors were optimized by the Response surface methodology. The independent variables were the CuO mass fraction, mill revolution number, coating time, ball size, ball mass and sample mass. The response variable was the specific resistance. The optimization of six factors by the fractional factorial design indicated that CuO mass fraction, mill revolution number, and coating time were the key factors. The levels of these three factors were selected by the three-factors full factorial design and steepest ascent method. The steepest ascent method was used to approach the optimum range for maximum specific resistance. The Box-Behnken design was finally used to analyze the response surfaces of the screened factors for further optimization. The results of the Box-Behnken design showed that the CuO mass fraction and mill revolution number were the main factors affecting the efficiency of coating process. As the CuO mass fraction increased, the specific resistance increased. In contrast, the specific resistance increased with decreasing mill revolution number. The process optimization results revealed a high agreement between the experimental and the predicted data ($Adj-R^2=0.944$). The optimized CuO mass fraction, mill revolution number, and coating time were 0.4, 200 rpm, and 15 min, respectively. The measured value of the specific resistance of the coated pellet under the optimized conditions of the maximum specific resistance was $530k{\Omega}{\cdot}cm$.

Performance Improvement of Computing Time of 2 Dimensional Finite Volume Model using MPI (MPI를 이용한 2차원 유한체적모형의 계산 성능 개선)

  • Kim, Tae Hyung;Han, Kun Yeun;Kim, Byung Hyun
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.7
    • /
    • pp.599-614
    • /
    • 2014
  • In this study, two dimensional finite volume model was parallelized to improve computing time, which has been developed to be able to apply for the mixed meshes of triangle and quadrilateral. MPI scheme which is free from limitation of the number of cores was applied, and non-blocking point-to-point communication was used for fluxes and time steps calculation domain. The developed model is applied to analyze dam break in a L-shaped experimental channel with $90^{\circ}$ bend and Malpasset dam breach event to calibrate the consistency between parallelized model and existing model and examine the speed-up and efficiency of computing time. Computational speed-up about the size of the input data was considered by simulating 4 cases classified by the number of meshes, Consequently, the simulation results reached a satisfactory accuracy compared to measured data and the results from existing model, and achieved more than 3 times benefit of computational speed-up against computing time of existing model. Simulation results of 3 cases classified by the size of input data lead us to the conclusion that it is important to use proper size of input data and the number of process in order to minimize the communication overhead.

Influence of High Temperature of the Porcelain Firing Process on the Marginal Fit of Zirconia Core (도재 소성 과정에서의 고온이 지르코니아 코어의 변연적합도에 미치는 영향)

  • Kim, Jae-Hong;Kim, Ki-Baek
    • Journal of dental hygiene science
    • /
    • v.13 no.2
    • /
    • pp.135-141
    • /
    • 2013
  • One factor for successful prognosis of finished dental prosthesis is good marginal fit. The purpose of this study in vitro investigation was to compare the marginal fit of all-ceramic crown before and after porcelain veneering, to evaluate the influence of high temperature of the porcelain firing on the fit. For this experiment, model of abutment tooth of maxillary right central incisor was prepared. Ten working models were produced. Ten zirconia cores were made by dental computer aided design/computer aided manufacturing system. The marginal fit of specimens were examined using silicone replica technique. Silicone replicas were sectioned four times and were measured through a digital microscope (${\times}160$). Marginal fit is a distance connected between edge end part of specimen and abutment margin. Each specimens was measured twice, the first measurement was done prior to veneering porcelain firing, while the second measurement was done after the porcelain firing to evaluate this process. Statistical analyses were performed with paired t-test. $Mean{\pm}SD$ marginal fit was $60.8{\pm}14.2{\mu}m$ for zirconia core and $86.1{\pm}13.3{\mu}m$ for all-ceramic crown. They were statistically significant differences (p<0.001). But all specimens showed a marginal fit where the gap widths ranged within the clinical recommendation ($120{\mu}m$), all-ceramic crown production using the zirconia core was adequate.

Physical Properties of Rocks at the Gagok Skarn Deposit (가곡 스카른광상 암석의 물리적 특성)

  • Shin, Seungwook;Park, Samgyu;Kim, Hyoung-Rae
    • Geophysics and Geophysical Exploration
    • /
    • v.16 no.3
    • /
    • pp.180-189
    • /
    • 2013
  • Geophysical exploration is widely used to develop strategic mineral resources in the world because of its efficient method in detecting mineralized zones in the metallic ore deposit. It is important to understand the physical properties of the stratum so that geophysical data can be more accurately interpreted. This paper is to comprehend physical properties of the rock at the Gagok mine, a typical skarn deposit in Korea. Thus, laboratory tests were conducted on specimens of ore and host rocks which were collected from rock outcrops and drill cores at the Gagok mine. Using the measurement system of rock physical property, we investigated the density, magnetic susceptibility, resistivity, and spectral induced polarization. According to the results, all physical properties of specimens had wide differences depending on contents of ore minerals, which are formed by skarnization. Especially, using the chargeability and time constant from the calculated spectral induced polarization data by the Cole-Cole inversion, we could estimate the volume contents as well as the grain size of the sulfide minerals. Therefore, the spectral induced polarization technique may be considered a useful method when exploring metallic ore deposit with sulfide minerals.

The Si Microwire Solar Cell Fabricated by Noble Metal Catalytic Etching (Noble metal catalytic etching법으로 제조한 실리콘 마이크로와이어 태양전지)

  • Kim, Jae-Hyun;Baek, Sung-Ho;Choi, Ho-Jin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.278-278
    • /
    • 2009
  • A photovoltaic device consisting of arrays of radial p-n junction wires enables a decoupling of the requirements for light absorption and carrier extraction into orthogonal spatial directions. Each individual p-n junction wire in the cell is long in the direction of incident light, allowing for effective light absorption, but thin in orthogonal direction, allowing for effective carrier collection. To fabricate radial p-n junction solar cells, p or n-type vertical Si wire cores need to be produced. The majority of Si wires are produced by the vapor-liquid-solid (VLS) method. But contamination of the Si wires by metallic impurities such as Au, which is used for metal catalyst in the VLS technique, results in reduction of conversion efficiency of solar cells. To overcome impurity issue, top-down methods like noble metal catalytic etching is an excellent candidate. We used noble metal catalytic etching methods to make Si wire arrays. The used noble metal is two; Au and Pt. The method is noble metal deposition on photolithographycally defined Si surface by sputtering and then etching in various BOE and $H_2O_2$ solutions. The Si substrates were p-type ($10{\sim}20ohm{\cdot}cm$). The areas that noble metal was not deposited due to photo resist covering were not etched in noble metal catalytic etching. The Si wires of several tens of ${\mu}m$ in height were formed in uncovered areas by photo resist. The side surface of Si wires was very rough. When the distance of Si wires is longer than diameter of that Si nanowires are formed between Si wires. Theses Si nanowires can be removed by immersing the specimen in KOH solution. The optimum noble metal thickness exists for Si wires fabrication. The thicker or the thinner noble metal than the optimum thickness could not show well defined Si wire arrays. The solution composition observed in the highest etching rate was BOE(16.3ml)/$H_2O_2$(0.44M) in Au assisted chemical etching method. The morphology difference was compared between Au and Pt metal assisted chemical etching. The efficiencies of radial p-n junction solar Cells made of the Si wire arrays were also measured.

  • PDF

DEPTOR Expression Negatively Correlates with mTORC1 Activity and Tumor Progression in Colorectal Cancer

  • Lai, Er-Yong;Chen, Zhen-Guo;Zhou, Xuan;Fan, Xiao-Rong;Wang, Hua;Lai, Ping-Lin;Su, Yong-Chun;Zhang, Bai-Yu;Bai, Xiao-Chun;Li, Yun-Feng
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.11
    • /
    • pp.4589-4594
    • /
    • 2014
  • The mammalian target of rapamycin (mTOR) signaling pathway is upregulated in the pathogenesis of many cancers, including colorectal cancer (CRC). DEPTOR is an mTOR inhibitor whose expression is negatively regulated by mTOR. However, the role of DEPTOR in the development of CRC is not known. The aim of this study was to investigate the expression of DEPTOR and mTORC1 activity (P-S6) in a subset of CRC patients and determine their relation to tumor differentiation, invasion, nodal metastasis and disease-free survival. Here, Immunohistochemical expression of P-S6 (S235/236) and DEPTOR were evaluated in 1.5 mm tumor cores from 90 CRC patients and in 90 samples of adjacent normal mucosa by tissue microarray. The expression of P-S6 (S235/236) was upregulated in CRC, with the positive rate of P-S6 (S235/236) in CRC (63.3%) significantly higher than that in control tissues (36.7%, 30%) (p<0.05). P-S6 (S235/236) also correlated with high tumor histologic grade (p=0.002), and positive nodal metastasis (p=0.002). In contrast, the expression level of DEPTOR was correlated with low tumor histological grade (p=0.006), and negative nodal metastasis (p=0.001). Interestingly, P-S6 (S235/236) expression showed a significant negative association with the expression of DEPTOR in CRC (p=0.011, R= -0.279). However, upregulation of P-S6 (S235/236) (p=0.693) and downregulation of DEPTOR (p=0.331) in CRC were not significantly associated with overall survival. Thus, we conclude that expression of DEPTOR negatively correlates with mTORC1 activity and tumor progression in CRC. DEPTOR is a potential marker for prognostic evaluation and a target for the treatment of CRC.

Microtube Light-Emitting Diode Arrays with Metal Cores

  • Tchoe, Youngbin;Lee, Chul-Ho;Park, Junbeom;Baek, Hyeonjun;Chung, Kunook;Jo, Janghyun;Kim, Miyoung;Yi, Gyu-Chul
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.287.1-287.1
    • /
    • 2016
  • Three-dimensional (3-D) semiconductor nanoarchitectures, including nano- and micro- rods, pyramids, and disks, are emerging as one of the most promising elements for future optoelectronic devices. Since these 3-D semiconductor nanoarchitectures have many interesting unconventional properties, including the use of large light-emitting surface area and semipolar/nonpolar nano- or micro-facets, numerous studies reported on novel device applications of these 3-D nanoarchitectures. In particular, 3-D nanoarchitecture devices can have noticeably different current spreading characteristics compared with conventional thin film devices, due to their elaborate 3-D geometry. Utilizing this feature in a highly controlled manner, color-tunable light-emitting diodes (LEDs) were demonstrated by controlling the spatial distribution of current density over the multifaceted GaN LEDs. Meanwhile, for the fabrication of high brightness, single color emitting LEDs or laser diodes, uniform and high density of electrical current must be injected into the entire active layers of the nanoarchitecture devices. Here, we report on a new device structure to inject uniform and high density of electrical current through the 3-D semiconductor nanoarchitecture LEDs using metal core inside microtube LEDs. In this work, we report the fabrications and characteristics of metal-cored coaxial $GaN/In_xGa_{1-x}N$ microtube LEDs. For the fabrication of metal-cored microtube LEDs, $GaN/In_xGa_{1-x}N/ZnO$ coaxial microtube LED arrays grown on an n-GaN/c-Al2O3 substrate were lifted-off from the substrate by wet chemical etching of sacrificial ZnO microtubes and $SiO_2$ layer. The chemically lifted-off layer of LEDs were then stamped upside down on another supporting substrates. Subsequently, Ti/Au and indium tin oxide were deposited on the inner shells of microtubes, forming n-type electrodes of the metal-cored LEDs. The device characteristics were investigated measuring electroluminescence and current-voltage characteristic curves and analyzed by computational modeling of current spreading characteristics.

  • PDF

Classification of the Aged Distribution and the Occupational-Demographic Characteristics in the Seoul Metropolitan Area (수도권 고령층 분포지역의 유형화와 유형별 거주 및 고용 특성 분석)

  • Park, So Hyun;Lee, Keumsook
    • Journal of the Korean Regional Science Association
    • /
    • v.33 no.3
    • /
    • pp.79-100
    • /
    • 2017
  • This study provides the insight into the aged employment provision issue for the aged-low growth era. For the purpose, we analyze the national trend of the age demographic and occupational employment in first. And then we investigate the spatial characteristics of employment of the aged in the Seoul Metropolitan area which has the highest elderly population by utilizing location quotient, factor analysis, and K-means cluster analysis. As the result, we found that the spatial distribution patterns of the residence and workplace of the elderly were nearly coincided with each other. Furthermore, five clusters of the aged distribution have been determined according to the industrial-occupational-demographic attributes. The result revealed clear spatial segrmentation: Most of elderly population of the research area have been engaged in the low-level service jobs, while elderly population employed to the educated-knowledged based high-level jobs has been distributed at a few cores. The results could be applied to the practical use for regional employment planning for the aged.

Assessment of Parallel Computing Performance of Agisoft Metashape for Orthomosaic Generation (정사모자이크 제작을 위한 Agisoft Metashape의 병렬처리 성능 평가)

  • Han, Soohee;Hong, Chang-Ki
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.37 no.6
    • /
    • pp.427-434
    • /
    • 2019
  • In the present study, we assessed the parallel computing performance of Agisoft Metashape for orthomosaic generation, which can implement aerial triangulation, generate a three-dimensional point cloud, and make an orthomosaic based on SfM (Structure from Motion) technology. Due to the nature of SfM, most of the time is spent on Align photos, which runs as a relative orientation, and Build dense cloud, which generates a three-dimensional point cloud. Metashape can parallelize the two processes by using multi-cores of CPU (Central Processing Unit) and GPU (Graphics Processing Unit). An orthomosaic was created from large UAV (Unmanned Aerial Vehicle) images by six conditions combined by three parallel methods (CPU only, GPU only, and CPU + GPU) and two operating systems (Windows and Linux). To assess the consistency of the results of the conditions, RMSE (Root Mean Square Error) of aerial triangulation was measured using ground control points which were automatically detected on the images without human intervention. The results of orthomosaic generation from 521 UAV images of 42.2 million pixels showed that the combination of CPU and GPU showed the best performance using the present system, and Linux showed better performance than Windows in all conditions. However, the RMSE values of aerial triangulation revealed a slight difference within an error range among the combinations. Therefore, Metashape seems to leave things to be desired so that the consistency is obtained regardless of parallel methods and operating systems.

Groundwater Conditions reiated with the Geologic Structures of Bedrocks in the Gyuk-Po Area. (격포 기반암의 지질구조와 지하수 상태)

  • 박동극
    • The Journal of Engineering Geology
    • /
    • v.3 no.2
    • /
    • pp.115-124
    • /
    • 1993
  • Hydrogeological survey related to groundwater condifiors was performed at the study area in Gyukpo, BuanGun, ChunlabukDo to express the relationships between groundwater conditions and the geologic structures such as joints, faults and beddings in bedrock About 200 joints and sjgnfficant faults were measured in this area. Typically, The fracture analysis on cores of 7 boreholes was tried to quantify fracture numerically. Groundwater level was periodically measured for three months. The packer tests of about 175 were carried out in 7 boreholes. As the result, Fractures are locaHy developed as ground water bearing zone and an average hydraulic conductivity of bedrock is $1{\times}10^{-5}cm/sec$ in this area the hydraulic conductivity of this area is correlated with fracture frequency value of F15 and is also well correlated with fracture developed and depth. In accordance with depth, fracture frequency and hydraulic conductivity are decreased. Hydraulic conductivity of granite along depth shows an obiouse change in values but that of sedimentary rocks do not shows changeless. Groundwater movement in the bedrocks of the study area affected not by joints but faults developed in the different rock boundary. In the northern part of this area, The differences of hydraulic conductivity between granite and sedimentary rocks give rise abrsspt at difference in groundwater leveL In the southern part of the study area, there is no different in groundwater level of both same rock types.

  • PDF