• Title/Summary/Keyword: Core parameters

Search Result 994, Processing Time 0.024 seconds

New Mathematical Models with Core Loss Factor for Control of AC Motors

  • Shinnaka, Shinji
    • Proceedings of the KIPE Conference
    • /
    • 1998.10a
    • /
    • pp.630-635
    • /
    • 1998
  • This paper establishes in a new unified manner new mathematical models with core(iron) loss factor for two kinds of AC motors, induction and synchronous motors which are supposed to generate torque precisely or/and efficiently under vector controls. Our new models consist of three basic equations consistent with the others such as differential equation describing electromagnetic dynamics, torque equation describing torque generating mechanism, energy transmission equation describing how injected energy is wasted, saved or transmitted where all vector signals are defined in general frame of arbitrary instant angular velocity. It is clearly shown in our models that equivalent core-loss resistance can express appropriately and separately both eddy-current and hysteresis losses rather than mere vague loss. Proposed model of induction motor is the most compact in sense of the number of employed interior states and parameters. This compact model can also represent eddy-current and hysteresis losses of rotor as well as stator. For synchronous motor, saliency is taken into consideration. As well known model for cylindrical motor can be obtained directly from salient one as its special case.

  • PDF

Development of Iron Core Type Linear Motor for Machine Tool (공작기계용 철심형 리피어모터 기술 개발)

  • Joung, Jae-Han;Park, Jae-Wan;Lee, Sang-Ryong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.9
    • /
    • pp.82-89
    • /
    • 2002
  • There is an intensifying demand fur linear motors in vast range of industry applications such as in factory automation and semi-conductor manufacturing equipment due to their high positioning accuracy, high static stiffness, high thrust and excellent dynamic characteristics. This paper presents an iron core type linear motor for machine tool whose rated thrust is up to 6000N. For electromagnetic field and dynamic analysis, finite element method (FEM) is implemented to predict motor performance. Various design parameters are considered to reduce thrust ripple and to improve dynamic performance with the least sacrifice of effective thrust. Experimental results on thrust and static stiffness are also followed to confirmed the validity of the analysis.

Characteristic Analysis of a Permanent Magnet Transverse Flux Linear Motor with Spiral Core

  • Lee, Ji-Young;Kim, Ji-Won;Woo, Byung-Chul;Kang, Do-Hyun
    • Journal of Magnetics
    • /
    • v.18 no.2
    • /
    • pp.111-116
    • /
    • 2013
  • This paper presents a characteristic analysis method of a permanent magnet type transverse flux linear motor (TFLM) with spiral cores. The spiral cores are used as the mover cores in order to make 3-dimensional (3-D) magnetic flux paths at the TFLM which have 3-D magnetic flux flows. The 3-D Equivalent Magnetic Circuit Network Method is used to analyse the magnetic characteristics of the machine, and an imaginary part, 'flux barrier,' is introduced to consider the spiral core characteristic. Magnetic parameters such as flux, inductance, and thrust are calculated from the analysis results. The computed thrust forces are compared to measured values to confirm the accuracy of the analysis.

Fabrication of Micromachined On-chip High Ratio Air Core Solenoid Inductor (MEMS에 의한 On-chip 고종횡비 Air Core Solenoid 인덕터의 제작)

  • Lee Jeong-Bong;Kim Kyung-Hwan
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.8
    • /
    • pp.780-784
    • /
    • 2006
  • We present high aspect ratio air-core solenoid inductors with $100{\mu}m\;and\;200{\mu}m$ tall via structures on Pyrex wafer. The effect of various parameters such as different number of turns, via heights, pitch distance between turns on inductor's radio frequency (RF) characteristics have been studied. The highest Q factor we obtained from various solenoid inductors is 72.8 at 9.7 GHz, which was produced by a 3-turn inductor.

Photonic Bandgap Bragg Fibers: A New Platform for Realizing application-specific Specialty Optical Fibers and Components

  • Pal, Bishnu P.
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2006.02a
    • /
    • pp.87-88
    • /
    • 2006
  • Bragg fibers, consisting of a low index core (including air) surrounded by a series of periodic layers of alternate high and low refractive index materials, each being higher than that of the core, form a 1D photonic bandgap (PBG). In view of the multitude of individual physical parameters that characterize a Bragg fiber, they offer a wide choice of parametric avenues to tailor their propagation characteristics. Owing to their unique PBG guidance mechanism, Bragg fibers indeed exhibit unusual dispersion characteristics that are otherwise nearly impossible to achieve in conventional silica fibers. Solid core Bragg fibers, amenable to fabrication by the highly mature MCVD technology, could be designed to realize broadband supercontinuum light. This talk would review our recent works on modeling of propagation characteristics, dispersion tailoring in them for applications as metro as well as dispersion compensating fibers and also as supercontinuum light generators.

  • PDF

Infrared-Visible Photometric Analyses of Core-collapse Supernovae and Supernova Dust Formation

  • Pak, Mina;Moon, Dae-Sik;KIM, Sang Chul;Salbi, Pegah;Gal-Yam, Avishay;Lee, Ho-Gyu
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.1
    • /
    • pp.42.3-43
    • /
    • 2016
  • We present multiband photometric analyses of 10 core-collapse supernovae in the near-infrared and visible wavebands. Our infrared data is from observations of the supernovae using the Wide Field Infrared Camera at the Palomar 5-m telescope as part of the Caltech Core-Collapse Supernova Program, while we obtain the visible data from publicly available data base. By fitting the broadband spectral energy distribution with a black body and, when necessary, modified black body component, we estimate physical parameters of the supernovae more accurately and also conduct a systematic investigation of when the supernovae show any indication of dust formation.

  • PDF

Double bonded Cooper-Naghdi micro sandwich cylindrical shells with porous core and CNTRC face sheets: Wave propagation solution

  • Yazdani, Raziye;Mohammadimehr, Mehdi
    • Computers and Concrete
    • /
    • v.24 no.6
    • /
    • pp.499-511
    • /
    • 2019
  • In this paper, wave propagation of double-bonded Cooper-Naghdi micro sandwich cylindrical shells with porous core and carbon nanotube reinforced composite (CNTRC) face sheets are investigated subjected to multi-physical loadings with temperature dependent material properties. The governing equations of motion are derived by Hamilton's principle. Then, the influences of various parameters such as wave number, CNT volume fraction, temperature change, Skempton coefficient, material length scale parameter, porosity coefficient on the phase velocity of double-bonded micro sandwich shell are taken into account. It is seen that by increasing of Skempton coefficient, the phase velocity decreases for higher wave number and the results become approximately the constant. Also, by increasing of the material length scale parameter, the cut of frequency increases, because the stiffness of micro structure increases. The obtained results for this article can be used to detect, locate and quantify crack.

Rigid-Plastic Finite Element Analysis for the Lamination Process of a Precision Motor Core using Progressive Dies (순차이송 금형을 사용한 정밀 모터코어 적층공정의 강소성 유한요소해석)

  • Park, Keun;Choi, Sang-Ryun
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.5
    • /
    • pp.45-52
    • /
    • 2001
  • In order to increase the productivity of electrical parts, manufacturing processes using progressive dies have been widely used in the industry. Motor cores have been fabricated using progressive stacking die with the lamination procedure for better electro-magnetic property. For the proper design off process, a prediction of the process is required to obtain many design parameters. In this work, rigid-plastic finite element analysis is carried out in order to simulate the lamination process of the motor core. The effects of the embossing depth, the amount of deviation, and the number of stacked sheets are investigated and compared with experiments. The forming process can then be predicted successfully from the results of analyses, which enables an appropriate design to be made for the die and the process.

  • PDF

MC21/CTF and VERA multiphysics solutions to VERA core physics benchmark progression problems 6 and 7

  • Kelly, Daniel J. III;Kelly, Ann E.;Aviles, Brian N.;Godfrey, Andrew T.;Salko, Robert K.;Collins, Benjamin S.
    • Nuclear Engineering and Technology
    • /
    • v.49 no.6
    • /
    • pp.1326-1338
    • /
    • 2017
  • The continuous energy Monte Carlo neutron transport code, MC21, was coupled to the CTF subchannel thermal-hydraulics code using a combination of Consortium for Advanced Simulation of Light Water Reactors (CASL) tools and in-house Python scripts. An MC21/CTF solution for VERA Core Physics Benchmark Progression Problem 6 demonstrated good agreement with MC21/COBRA-IE and VERA solutions. The MC21/CTF solution for VERA Core Physics Benchmark Progression Problem 7, Watts Bar Unit 1 at beginning of cycle hot full power equilibrium xenon conditions, is the first published coupled Monte Carlo neutronics/subchannel T-H solution for this problem. MC21/CTF predicted a critical boron concentration of 854.5 ppm, yielding a critical eigenvalue of $0.99994{\pm}6.8E-6$ (95% confidence interval). Excellent agreement with a VERA solution of Problem 7 was also demonstrated for integral and local power and temperature parameters.

UNCERTAINTY EVALUATIONS OF CASMO-3/MASTER SYSTEM FOR PWR CORE NEUTRONICS CALCULATIONS

  • Song, Jae-Seung;Kim, Kang-Seog;Lee, Kibog;Park, Jin-Ha;Zee, Sung-Quun
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05a
    • /
    • pp.244-250
    • /
    • 1996
  • Uncertainties in core neutronic calculations of CASMO-3/MASTER, which is a KAERI developed core nuclear design code system, were evaluated via comparisons with measured data. Comparisons were performed with plant measurement data from one Westinghouse type and one ABB-CE type plant and two Korean standard type plants. The CASMO-3/MASTER capability and levels of accuracy are concluded to be sufficient for the neutronics design including safety related parameters related with reactivity, power distributions, temperature and power coefficients, inverse boron worth and control bank worth.

  • PDF