• Title/Summary/Keyword: Core Concrete

Search Result 785, Processing Time 0.024 seconds

Simplified stress-strain model for circular steel tube confined UHPC and UHPFRC columns

  • Le, An H.;Ekkehard, Fehling;Thai, Duc-Kien;Nguyen, Chau V.
    • Steel and Composite Structures
    • /
    • v.29 no.1
    • /
    • pp.125-138
    • /
    • 2018
  • The research on the confinement behavior of ultra high performance concrete without and with the use of steel fibers (UHPC and UHPFRC) has been extremely limited. In previous studies, authors experimentally investigated the axially compressive behavior of circular steel tube confined concrete (STCC) short and intermediate columns with the employment of UHPC and UHPFRC. Under loading on only the concrete core, the confinement effect induced by the steel tube was shown to significantly enhance the utimate stress and its corresponding strain of the concrete core. Therefore, this paper develops a simplified stress - strain model for circular STCC columns using UHPC and UHPFRC with compressive strength ranging between 150 MPa and 200 MPa. Based on the regression analysis of previous test results, formulae for predicting peak confined stress and its corresponding strain are proposed. These proposed formulae are subsequently compared against some previous empirical formulae available in the literature to assess their accuracy. Finally, the simplified stress - strain model is verified by comparison with the test results.

Application of Sandwich Structure with Rigid Core for High Speed Machine Tool Bed (Rigid Core 샌드위치 구조의 초고속 공작기계 베드 적용에 관한 연구)

  • 서정도;이대길;김태형;박보선;최원선
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.113-116
    • /
    • 2003
  • To maximize the productivity in machining molds and dies, machine tools should operate at high speeds. During the high speed operation of moving frames or spindles, vibration problems are apt to occur if the machine tool structures are made of conventional steel materials with inferior damping characteristics. However, self-excited vibration or chatter is bound to occur during high speed machining when cutting speed exceeds the stability limit of machine tool. Chatter is undesirable because of its adverse effect on surface finish, machining accuracy, and tool lift. Furthermore, chatter is a major cause of reducing production rate because, if no remedy can be found, metal removal rates have to be lowered until vibration-free performances is obtained. Also, the resonant vibration of machine tools frequently occurs when operating frequency approaches one of their natural frequencies because machine tools have several natural frequencies due to their many continuous structural elements. However, these vibration problems are closely related to damping characteristics of machine tool structures. This paper presents the use of polymer concrete and sandwich structures to overcome vibration problems. The polymer concrete has high potential for machine tool bed due to its good damping characteristics with moderate stiffness. In this study, a polymer concrete bed combined with welded steel structure i.e., a hybrid structure was designed and manufactured for a high-speed gantry-type milling. Also. its dynamic characteristics were measured by modal tests.

  • PDF

Load Transferring Mechanism and Design Method of Effective Detailings for Steel Tube-Core Concrete Interaction in CFT Columns with Large-Section

  • Li, Yuanqi;Luo, Jinhui;Fu, Xueyi
    • International Journal of High-Rise Buildings
    • /
    • v.7 no.3
    • /
    • pp.223-232
    • /
    • 2018
  • Two novel types of construction detailings, including using the distributive beam and the inner ring diaphragm in the joint between large-section CFT columns and outrigger truss to enhance the transferring efficiency of huge vertical load, and using the T-shaped stiffeners in the steel tube of large-section CFT columns to promote the local buckling capacity of steel tubes, were tested to investigate their working mechanism and design methods. Experimental results show that the co-working performance between steel tube and inner concrete could be significantly improved by setting the distributive beam and the inner ring diaphragm which can transfer the vertical load directly in the large-section CFT columns. Meanwhile, the T-shaped stiffeners are very helpful to improve the local bulking performance of steel tubes in the column components by the composite action of T-shaped stiffeners together with the core concrete under the range of flange of T-shaped stiffeners. These two approaches can result in a lower steel cost in comparison to normal steel reinforced concrete columns. Finally, a practical engineering case was introduced to illustrate the economy benefits achieved by using the two typical detailings.

Axial load behavior and stability strength of circular tubed steel reinforced concrete (SRC) columns

  • Yan, Biao;Liu, Jiepeng;Zhou, Xuhong
    • Steel and Composite Structures
    • /
    • v.25 no.5
    • /
    • pp.545-556
    • /
    • 2017
  • The tubed steel reinforced concrete (SRC) column is a composite column in which the outer steel tube is mainly used to provide confinement on the core concrete. This paper presents experimental and analytical studies on the behavior of circular tubed SRC (TSRC) columns subjected to axial compression. Eight circular TSRC columns were tested to investigate the effects of length-to-diameter ratio (L/D) of the specimens, diameter-to-thickness ratio (D/t) of the steel tubes, and use of stud shear connectors on the steel sections. Elastic-plastic analysis on the steel tubes was used to investigate the mechanism of confinement on the core concrete. The test results indicated that the tube confinement increased the strength and deformation capacity for both short and slender columns, and the effects on strength were more pronounced for short columns. A nonlinear finite element (FE) model was developed using ABAQUS, in which the nonlinear material behavior and initial geometric imperfection were included. Good agreement was achieved between the predicted results using the FE model and the test results. The test and FE results were compared with the predicted strengths calculated by Eurocode 4 and the AISC Standard. Based on the analytical results, a new design method for this composite column was proposed.

A Study on Evaluation of Complex Deterioration evaluation and Prediction of Residual Life through Concrete Core (콘크리트 코어 분석을 통한 복합열화 평가와 잔존수명 예측 연구)

  • Shim, Jaeyoung
    • Journal of the Society of Disaster Information
    • /
    • v.13 no.3
    • /
    • pp.332-339
    • /
    • 2017
  • In the case of aged structures, the information of the structure is often lost after the completion of construction, and there is a great difficulty in predicting the durability life of the structure due to the lack of information on concrete formulations. In this study, the durability of concrete specimens was evaluated by various field and indoor test methods based on the core specimens collected from the field, and the durability life of the concrete structures was predicted by using the FEM analysis technique.As a result, the neutralization rate coefficient was $5.38E-6(cm^2/day)$ and the rate of progress was low. And the possibility of complex deterioration due to carbonation and salting was found to be very low.

An Experimental Study on the Effects of Lateral Reinforcement of High-Strength R/C Columns Subjected to Reversed Cyclic and Axial Forces (축력과 반복횡력을 받는 고강도 R/C 기둥의 횡보강근 효과에 관한 실험적 연구)

  • 한범석;이지영;안종문;이광수;신성우
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.04b
    • /
    • pp.493-498
    • /
    • 1998
  • An experimental investigation was conducted to examine the behavior of high-strength concrete R/C columns subjected to moment, shear and axial load. The test parameters of specimens were the compressive strength of concrete(f'c=250, 516, 600kg/ ㎠), space of lateral reinforcement (20, 30, 37cm) and lateral reinforcement ratio(ρs=2.1, 3.15%). Test results indicated that compressive strength of concrete and lateral reinforcement can significantly affect and alter the behavior of column under inelastic cyclic loadings. Despite of the defaults of high-strength concrete, with increased amount of lateral reinforcement ratio to core concrete and added sub-lateral reinforcement, ductility and strength of RC columns used high-strength concrete can secured.

  • PDF

A Fundamental Study on the Effectiveness of Cold Weather Concreting Using Anti-freeze Agent and Insulating Form (내한제 및 단열거푸집에 의한 한중콘크리트 시공의 효율화에 관한 기초적 연구)

  • Kim, Kyoung-Min;Won, Cheol;Kim, Gi-Cheol;Oh, Sun-Kyo;Han, Cheon-Goo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.617-622
    • /
    • 2001
  • This paper presents the effectiveness of cold weather concreting by applying both anti-freeze agent and insulating forms developed through previous study investigating insulating effects on the concrete and the strength gain. According to test results, in $-10^{\circ}C$ of air temperature, when euroforms are applied, the temperature of plain concrete drops below $0^{\circ}C$ and maintains its temperature during early 24 hours. However, when insulating forms are applied, the temperature of concrete keeps 8~$13^{\circ}C$ during first 24 hours. Insulating forms has better performance on insulating effects than existing euroforms. Concrete containing anti-freeze agent shows temperature rising effects about $1^{\circ}C$ compared to plain concrete. Strength gain of core concrete shows higher when insulating forms is applied.

  • PDF

Cracking Behavior of RC Panel Subjected to Biaxial Tension (2축 인장을 받는 철근콘크리트 패널의 균열 거동)

  • 조재열;조남소;구은숙;김남식;전영선
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.475-480
    • /
    • 2002
  • Tension tests of six half-thickness concrete containment wall elements were conducted as part of a Korea Atomic Energy Research Institute (KARRI) program. The aim of the KAERI test program is providing a test-verified analytical method for estimating capacities of concrete reactor containment buildings under internal overpressurization from postulated degraded core accidents. The data from the tests reported herein should be useful for benchmarking method that requires modeling of material behavior including concrete cracking and reinforcement/concrete interaction exhibited by the test. Major test variable is the compressive strength of concrete and its effect on the behavior of prestressed concrete panel subjected to biaxial tension.

  • PDF

A study on the Fundamental Properties of Concrete with Belite Cement (벨라이트시멘트 콘크리트의 기초적 성질에 대한 연구)

  • 문한영;문대중;하상욱;김기수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.04a
    • /
    • pp.167-170
    • /
    • 1998
  • As construction technology advances, most of concrete structures are becoming larger and taller. Therefore, high strength and high quality concrete is necessary for them. Nowadays, the proposal of using belite rich cement is investigated to satisfy high flowing, low heat, and high strength. In this study, the height difference, the falling time and the maximum temperature of concrete using BRC were lower than that of concrete using OPC. Furthermore the compressive strength of concrete using BRC with and without compacting was not different. And the compressive strength of core specimens was higher than that of specimens in water curing. Compared to OPC, there was a good relationship between the curing temperature and the development of strength in BRC.

  • PDF

A Exprimental Study on the Corrosion of Reinforcing Steel in a Coastal Concrete Structure due to the Attack of Chloride Ions (염분침투에 의한 해안 콘크리트 구조물의 철근부식에 관한 실험적 연구)

  • 안상섭;김은겸;신치범;조원일;이윤한
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.10a
    • /
    • pp.263-268
    • /
    • 1997
  • One of the principal causes of the deterioation of coastal concrete structures is the corrosion of reinforcing steel induced by the attack of chloride ions. An experimental study was performed to investigate the distribution of concentration of chloride ions in a coastal concrete structure and to measure the half-cell potential of embedded steel by using the copper-copper sulfate reference electrode. Quantitative analysis showed that the concentration of chloride ion in the aqueous phase near the surface of embedded steel exceeded a threshold value for corrosion, 0.05% by weight in concrete. The absolute value of half-cell potential at some members of embedded steel was measured to be higher than 350mV, indicating that the probability of corrosion is more than 90%. The prediction on corrosion based on the experimental measurements was confirmed by the observation of corrosion on the surface of steel bars in the concrete core taken out of the concrete structure.

  • PDF