• Title/Summary/Keyword: Copper-Plating

Search Result 265, Processing Time 0.025 seconds

Effects of Bath Compositions and Plating Conditions on Electroless Copper Plating Rate with Sodium Hypophosphite as Reducing Agent (환원제로 차아인산나트륨을 사용한 무전해 동도금속도에 미치는 도금액 조성과 도금조건의 영향)

  • Oh, I.S;Park, J.D.;Bai, Y.H.
    • Journal of Power System Engineering
    • /
    • v.5 no.2
    • /
    • pp.71-78
    • /
    • 2001
  • Using sodium hypophosphite as reducing agent, bath composition and plating condition of electroless copper plating on plating rate have been studied. The followings were determined as optimum, bath composition; $CuSO_4\;0.025M,\;NiSO_4\;0.002M,\;NaH_2PO_2\;0.4M$, sodium citrate 0.06M, $H_3BO_3$ 0.6M, thiourea or 2-MBT $0.2mg/{\ell}$, and operation conditions; pH $9{\sim}10$ at bath temperature rage of $60{\sim}70^{\circ}C$. A small amount of nickel ion($Ni^{2+}/Cu^{2+}$=0.002/0.025) to the hypophosphite reduced solution promotes autocatalysis and continuous plating. An additive such as thiourea or 2-MBT of a small amount($0.2mg/{\ell}$) can be used to stabilize the solution without changing plating rate much. The attivation energy between $20^{\circ}C\;and\;70^{\circ}C$ were calculated to be 11.3kcal/mol for deposition weight. Plating reaction had been ceased by the adjustment of pH above 13, temperature higher than $90^{\circ}C\;and\;under\;20^{\circ}C$. Deposited surface became worse in the case of increment of bath temperature above $80^{\circ}C$.

  • PDF

Fabrication of Carbon Nanofiber/Cu Composite Powder by Electroless Plating and Microstructural Evolution during Thermal Exposure (무전해 도금에 의한 탄소나노섬유/Cu 복합 분말 제조 및 열적 안정성)

  • Kim In-soo;Lee Sang-Kwan
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.10a
    • /
    • pp.39-42
    • /
    • 2004
  • Carbon nanofiber/Cu composite powder has been fabricated by electroless plating process. Microstructural evolution of the composite powder after heat treatment under vacuum, hydrogen and air environment was investigated. A dispersed carbon nanofiber coated by copper was produced at the as-plated condition. Carbon nanofiber is coated uniformly and densely with the plate shaped copper particles. The copper plates on the carbon nanofiber aggregate during the thermal exposure at elevated temperature in vacuum and hydrogen in order to reduce surface energy. The thermal exposure of the composite powder in air at $400^{\circ}C$ for 3 hours leads to the spherodization of the composite powder owing to oxidation of copper.

  • PDF

Effects of Chloride Ion on Accelerator and Inhibitor during the Electrolytic Cu Via-Filling Plating (전해 Cu Via-Filling 도금에서 염소이온이 가속제와 억제제에 미치는 영향)

  • Yu, Hyun-Chul;Cho, Jin-Ki
    • Journal of the Korean institute of surface engineering
    • /
    • v.46 no.4
    • /
    • pp.158-161
    • /
    • 2013
  • Recently, the weight reduction and miniaturization of the electronics have placed great emphasis. The miniaturization of PCB (Printed Circuit Board) as main component among the electronic components has also become progressed. The use of acid copper plating process for Via-Filling effectively forms interlayer connection in build-up PCBs with high-density interconnections. However, in the case of copper-via filled in a bath, which is greatly dependent on the effects of additives. This paper discusses effects of Cl ion on the filling of PCB vias with electrodeposited copper based on both electrochemical experiment and practical observation of cross sections of vias.

Effect of Additives on the Hardness of Copper Electrodeposits in Acidic Sulfate Electrolyte (황산구리 전착에서의 첨가제가 구리전착층의 경도에 미치는 영향)

  • Min, Sung-Ki;Lee, Jeong-Ja;Hwang, Woon-Suk
    • Corrosion Science and Technology
    • /
    • v.10 no.4
    • /
    • pp.143-150
    • /
    • 2011
  • Copper electroplating has been applied to various fields such as decorative plating and through-hole plating. Technical realization of high strength copper preplating for wear-resistant tools and molds in addition to these applications is the aim of this work. Brighters and levelers, such as MPSA, Gelatin, Thiourea, PEG and JGB, were added in copper sulfate electrolyte, and the effects of these organic additives on the hardness were evaluated. All additives in this work were effective in increasing the hardness of copper electrodeposits. Thiourea increased the hardness up to 350 VHN, and was the most effective accelarator in sulfate electrolyte. It was shown from the X-ray diffraction analysis that preferred orientation changed from (200) to (111) with increasing concentration of organic additives. Crystallite size decreased with increasing concentration of additive. Hardness was increased with decreasing crystallite size, and this result is consistent with Hall-Petch relationship, and it was apparent that the hardening of copper electrodeposits results from the grain refining effect.

The Research of Solar Cells Applying Ni/Cu/Ag Contact for Low Cost & High Efficiency (태양전지의 저가격.고효율화를 위한 Ni/Cu/Ag 전극에 관한 연구)

  • Cho, Kyeong-Yeon;Lee, Ji-Hun;Lee, Soo-Hong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.444-445
    • /
    • 2009
  • The metallic contact system of silicon solar cell must have several properties, such as low contact resistance, easy application and good adhesion. Ni is shown to be a suitable barrier to Cu diffusion as well as desirable contact metal to silicon. Nickel monosilicide(NiSi) has been suggested as a suitable silicide due to its lower resistivity, lower sintering temperature and lower layer stress than $TiSi_2$. Copper and Silver can be plated by electro & light-induced plating method. Light-induced plating makes use the photovoltaic effect of solar cell to deposit the metal on the front contact. The cell is immersed into the electrolytic plating bath and irradiated at the front side by light source, which leads to a current density in the front side grid. Electroless plated Ni/ Electro&light-induced plated Cu/ Light-induced plated Ag contact solar cells result in an energy conversion efficiency of 16.446 % on $0.2\sim0.6\;{\Omega}{\cdot}cm$, $20\;\times\;20\;mm^2$, CZ(Czochralski) wafer.

  • PDF

Thermal Heating Characteristics of Electroless Cu-Plated Graphite Fibers (무전해 구리도금 된 흑연 섬유의 발열 특성)

  • Lee, Kyeong Min;Kim, Min-Ji;Lee, Sangmin;Yeo, Sang Young;Lee, Young-Seak
    • Korean Chemical Engineering Research
    • /
    • v.55 no.2
    • /
    • pp.264-269
    • /
    • 2017
  • To improve heating characteristics of graphite fibers, graphite fibers were copper-plated by electroless plating. The Cu-plated graphite fibers were investigated by thermos-gravimetric analysis in air to calculate quantities of copper on surface of graphite fiber according to plating time. Also, the surface temperature with applied voltage was observed by thermos-graphic camera using a strand of graphite fiber. According to the increment of plating time, the higher quantities of plated copper on graphite fiber were obtained. The electric conductivity of plated graphite fiber for 20 minutes was resulted in 1594.3 S/cm, and surface temperature of this sample showed the maximum temperature $57.2^{\circ}C$. These result could be attributed that copper having great electric conductivity are growing on graphite fiber and followed improving heating characteristics.

In Situ Sensing of Copper-plating Thickness Using OPD-regulated Optical Fourier-domain Reflectometry

  • Nayoung, Kim;Do Won, Kim;Nam Su, Park;Gyeong Hun, Kim;Yang Do, Kim;Chang-Seok, Kim
    • Current Optics and Photonics
    • /
    • v.7 no.1
    • /
    • pp.38-46
    • /
    • 2023
  • Optical Fourier-domain reflectometry (OFDR) sensors have been widely used to measure distances with high resolution and speed in a noncontact state. In the electroplating process of a printed circuit board, it is critically important to monitor the copper-plating thickness, as small deviations can lead to defects, such as an open or short circuit. In this paper we employ a phase-based OFDR sensor for in situ relative distance sensing of a sample with nanometer-scale resolution, during electroplating. We also develop an optical-path difference (OPD)-regulated sensing probe that can maintain a preset distance from the sample. This function can markedly facilitate practical measurements in two aspects: Optimal distance setting for high signal-to-noise ratio OFDR sensing, and protection of a fragile probe tip via vertical evasion movement. In a sample with a centimeter-scale structure, a conventional OFDR sensor will probably either bump into the sample or practically out of the detection range of the sensing probe. To address this limitation, a novel OPD-regulated OFDR system is designed by combining the OFDR sensing probe and linear piezo motors with feedback-loop control. By using multiple OFDR sensors, it is possible to effectively monitor copper-plating thickness in situ and uniformize it at various positions.

연구논문 초록(1967~1978)

  • 한국표면공학회
    • Journal of the Korean institute of surface engineering
    • /
    • v.16 no.4
    • /
    • pp.199-214
    • /
    • 1983
  • Up to this date, numerous methods of analysis of electroplating solutions are published. Some, however, need lots of works before reaching final results, or require high technique and special instruments, and also some are unaccurate due to unclearnes of end point. Like our undevelope countries, technicians of electoplating shops are most high school gradutes or under, and have not much knowledge on chemistry. Furthermore, those technicians have to control their plating solutions by themselves without having enough analytical laboratory equiIJment. Therefore, in this paper the simplest, besides accurate method is investigated after comparing nu.merous methods published. Among the methods of 'copper determinations from acid and alkaline copper plating baths, EDT A titration method are chosen, due to these methods are the simplest and fastest for the evaluation of metal content, without requiring any special instrument. For acid copper solutions, chelate titrations were accurate enough. Since the end point of titration of chelate method is variable according to the kind of .indicators androther metal's coexsistence as well as solution comIJonent, many difficulties were encountered from cyanide' copper, on the contrary of acid copper bath. PAN, PV, and MX indicators were tried, but it is found that MX is the best. In cyanide solution, due to cyanide is the masking reagent, elimination of this component is essential, and finally found that elimination eN- by precipitation with AgN03 solution was the simplest and the most accurate way among others. This method was very accurate for the new plating solutions even coexistence with organic brightners. However used solutions for long months running have to be predetermined the accurate copper value by thiosulfate method from time to time, before chelate titration by means of AgN03 precipitation. Always some constant deviatioJ;ls will be seen according to the solutions nature. Therefore those deviation values have to be compensated each time.

  • PDF

In-Situ Optical Monitoring of Electrochemical Copper Deposition Process for Semiconductor Interconnection Technology

  • Hong, Sang-Jeen;Wang, Li;Seo, Dong-Sun;Yoon, Tae-Sik
    • Transactions on Electrical and Electronic Materials
    • /
    • v.13 no.2
    • /
    • pp.78-84
    • /
    • 2012
  • An in-situ optical monitoring method for real-time process monitoring of electrochemical copper deposition (CED) is presented. Process variables to be controlled in achieving desired process results are numerous in the CED process, and the importance of the chemical bath conditions cannot be overemphasized for a successful process. Conventional monitoring of the chemical solution for CED relies on the pH value of the solution, electrical voltage level for the reduction of metal cations, and gravity measurement by immersing sensors into a plating bath. We propose a nonintrusive optical monitoring technique using three types of optical sensors such as chromatic sensors and UV/VIS spectroscopy sensors as potential candidates as a feasible optical monitoring method. By monitoring the color of the plating solution in the bath, we revealed that optically acquired information is strongly related to the thickness of the deposited copper on the wafers, and that the chromatic information is inversely proportional to the ratio of $Cu$ (111) and {$Cu$ (111)+$Cu$ (200)}, which can used to measure the quality of the chemical solution for electrochemical copper deposition in advanced interconnection technology.