• 제목/요약/키워드: Copper oxides

검색결과 89건 처리시간 0.024초

Transparent Conductive Films Composite with Copper Nanoparticle/Graphene Oxide Fabricated by dip Process and Electrospinning

  • 김진운;김경민;김용호;김수용;조수지;이응상;석중현
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.382.2-382.2
    • /
    • 2014
  • We explain a method to fabricate multi-layered transparent conductive films (TCF) using graphene oxide (GO), copper powder and polyurethane (PU) solution. The flexible graphene nanosheets (GNSs) serve as nanoscale connection between conductive copper nanoparticles (CuNps) and PU nanofibers, resulting in a highly flexible TCF. To fabricate conductive films with high transmittance, polyurethane (PU) nanofibers were used for a conductive network consisting of CuNps and GNSs (CuNps-GNSs). In this experiment, copper powder and graphene oxides were mixed in deionized water with the ultrasonication for 2 h. NaBH4 solution is used as a reduction agents of CuNps and GNSs (CuNps-GNSs) under a nitrogen atmosphere in the oil bath at 100% for 24 h to mixed. The purified and dispersed CuNp-GNS were obtained in deionized water, and diluted to a 10wt.% based on the contents of GNSs. Polyurethane (PU) nanofibers on a PET substrate were formed by electrospinning method. PET slides coated with the PU nanofibers were immersed into CuNp-GNS solution for several second, rinsed briefly in deionized water, and dried to obtain self-assembled CuNp-GNS/PU films. The morphology of the multi-layered films were characterized with a field emission scanning electron microscope (FE-SEM, Hitachi S-4700) and atomic force microscope (AFM, PSIA XE-100). The electrical property was analysed by the I-V measurement system and the optical property was measured by the UV/VIS spectroscopy.

  • PDF

Effects of Microbial Iron Reduction and Oxidation on the Immobilization and Mobilization of Copper in Synthesized Fe(III) Minerals and Fe-Rich Soils

  • Hu, Chaohua;Zhang, Youchi;Zhang, Lei;Luo, Wensui
    • Journal of Microbiology and Biotechnology
    • /
    • 제24권4호
    • /
    • pp.534-544
    • /
    • 2014
  • The effects of microbial iron reduction and oxidation on the immobilization and mobilization of copper were investigated in a high concentration of sulfate with synthesized Fe(III) minerals and red earth soils rich in amorphous Fe (hydr)oxides. Batch microcosm experiments showed that red earth soil inoculated with subsurface sediments had a faster Fe(III) bioreduction rate than pure amorphous Fe(III) minerals and resulted in quicker immobilization of Cu in the aqueous fraction. Coinciding with the decrease of aqueous Cu, $SO_4{^{2-}}$ in the inoculated red earth soil decreased acutely after incubation. The shift in the microbial community composite in the inoculated soil was analyzed through denaturing gradient gel electrophoresis. Results revealed the potential cooperative effect of microbial Fe(III) reduction and sulfate reduction on copper immobilization. After exposure to air for 144 h, more than 50% of the immobilized Cu was remobilized from the anaerobic matrices; aqueous sulfate increased significantly. Sequential extraction analysis demonstrated that the organic matter/sulfide-bound Cu increased by 52% after anaerobic incubation relative to the abiotic treatment but decreased by 32% after oxidation, indicating the generation and oxidation of Cu-sulfide coprecipitates in the inoculated red earth soil. These findings suggest that the immobilization of copper could be enhanced by mediating microbial Fe(III) reduction with sulfate reduction under anaerobic conditions. The findings have an important implication for bioremediation in Cu-contaminated and Fe-rich soils, especially in acid-mine-drainage-affected sites.

Interfacial Energetics of All Oxide Transparent Photodiodes

  • Yadav, Pankaj;Kim, Hong-sik;Patel, Malkeshkumar;Kim, Joondong
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.390.1-390.1
    • /
    • 2016
  • The present work explains the interfacial energetics of all oxide transparent photodiodes. The optical, structural and morphological of copper oxides were systematically analyse by UV-Visible spectrometer, X-Ray diffraction, Raman spectroscopy, Scanning electron microscopy (SEM) and Atomic force microscopy measurements (AFM). The UV-Visible result exhibits optical bandgap of Cu2O and CuO as 2.2 and 2.05 eV respectively. SEM and AFM result shows a uniform grain size distribution in Cu2O and CuO thin films with the average grain size of 45 and 40 nm respectively. The results of Current-Voltage and Kelvin probe force microscope characteristics describe the electrical responses of the Cu2O/ZnO and CuO/ZnO heterojunctions photodiodes. The obtained electrical response depicts the approximately same knee voltages with a measurable difference in the absolute value of net terminal current. More over the present study realizes the all oxide transparent photodiode with zero bias photocurrent. The presented results lay the template for fabricating and analysing the self-bias all oxide transparent photodetector.

  • PDF

Cu-ferrite에 의한 메탄의 부분산화 (Methane Partial Oxidation Using Cu-ferrite)

  • 우성웅;강경수;김창희;박주식
    • 한국수소및신에너지학회논문집
    • /
    • 제18권2호
    • /
    • pp.124-131
    • /
    • 2007
  • Methane is partially oxidized to produce the syngas by the lattice oxygen of metal oxides in the absence of gaseous oxygen. The present work deals with ferrite including copper component, which does not chemisorb methane, to investigate the suppression of the carbon deposition during the reduction of metal oxides by methane. Iron-based oxides of $Cu_xFe_{3-x}O_4$(X=0.25, 0.5, 1.0) was synthesized by the co-precipitation method. Thermogravimetric Analysis(TGA) was used to observe the isothermal reduction behavior of $Cu_xFe_{3-x}O_4$ and $Fe_3O_4$ at $600-900^{\circ}C$ under methane atmosphere. The crystal structures of reduced specimens were characterized by X-rays powder diffraction(XRD) technique. From the analyses of TGA, it is concluded that the reduction kinetics of $CuFe_2O_4$ was the fastest among $Fe_3O_4$ and $Cu_xFe_{3-x}O_4$(X=0.25, 0.5, 1.0). The X-ray diffraction analyses indicated that $Cu_xFe_{3-x}O_4$ was decomposed to Cu and $Fe_3O_4$ phase at $600^{\circ}C$ and was reduced to Cu and Fe phase at $800^{\circ}C$. $Fe_3O_4$, which was reduced at $900^{\circ}C$, showed Fe, graphite and $Fe_3C$ phases. On the contrary, $Cu_xFe_{3-x}O_4$ does not show the graphite or $Fe_3C$ phases. This results infer that Cu component suppress the carbon deposition on Cu-ferrite.

고온고습환경이 Sn계 무연솔더의 부식 및 기계적 특성에 미치는 영향 (Effects of High Temperature-moisture on Corrosion and Mechanical Properties for Sn-system Solder Joints)

  • 김정아;박유진;오철민;홍원식;고용호;안성도;강남현
    • Journal of Welding and Joining
    • /
    • 제35권3호
    • /
    • pp.7-14
    • /
    • 2017
  • The effect of high temperature-moisture on corrosion and mechanical properties for Sn-0.7Cu, Sn-3.0Ag-0.5Cu (SAC305) solders on flexible substrate was studied using Highly Accelerated Temperature/Humidity Stress Test (HAST) followed by three-point bending test. Both Sn-0.7Cu and SAC305 solders produced the internal $SnO_2$ oxides. Corrosion occurred between the solder and water film near flexible circuit board/copper component. For the SAC305 solder with Ag content, furthermore, octahedral corrosion products were formed near Ag3Sn. For the SAC305 and Sn-0.7Cu solders, the amount of internal oxide increased with the HAST time and the amount of internal oxides was mostly constant regardless of Ag content. The size of the internal oxide was larger for the Sn-0.7Cu solder. Despite of different size of the internal oxide, the fracture time during three-point bending test was not significantly changed. It was because the bending crack was always initiated from the three-point corner of the chip. However, the crack propagation depended on the oxides between the flexible circuit board and the Cu chip. The fracture time of the three-point bending test was dependent more on the crack initiation than on the crack propagation.

고속 구리제트에 대한 알루미나-탄화규소 복합재료의 충돌 저항물성 (Impact Resistance of Al2O3-SiC Composites Against High Velocity Copper Jet)

  • 김창욱;이형복
    • 한국세라믹학회지
    • /
    • 제43권10호
    • /
    • pp.660-665
    • /
    • 2006
  • The mechanical properties of $Al_2O_3$-SiC composites manufactured with adding various amount and size of SiC particles have been measured and analyzed. Generally, the elastic modulus of the composites shows about 50% less than that of PL-8 (45 wt% $Al_2O_3$-51 wt% $SiO_2$-4 wt% other oxides), but the flexural strength is similar with each other. The impact resistance property of $Al_2O_3$-SiC composite against high velocity copper jet was lower than that of PL-8 when SiC particles of approximately 3 $\mu$m diameter was added to. It is caused probably due to the micro-pores made by oxidation of SiC particles. However, in the case of the less-weighted $Al_2O_3$-SiC composite adding to 10 wt% SiC with average diameter of 10 $\mu$m and sintering at 1200$^{\circ}C$, the impact resistance property was improved up to 37 percent compared with that of PL-8.

혼합 하중하에서의 고분자/거친금속 계면의 파손경로 (Failure Paths of Polymer/Roughened Metal Interfaces under Mixed-Mode Loading)

  • 이호영;김성룡
    • 한국재료학회지
    • /
    • 제14권5호
    • /
    • pp.322-327
    • /
    • 2004
  • Copper-based leadframe sheets were oxidized in two kinds of hot alkaline solutions to form brown-oxide or black-oxide layer on the surface. The oxide coated leadframe sheets were molded with epoxy molding compound (EMC). After post mold curing, the oxide-coated EMC-leadframe joints were machined to form sandwiched Brazil-nut (SBN) specimens. The SBN specimens were used to measure the fracture toughness of the EMC/leadframe interfaces under mixed-mode (mode I + mode II) loading conditions. Fracture surfaces were analyzed by various equipment to investigate failure path. The results revealed that the failure paths were strongly dependent on the oxide type. In case of brown oxide, hackle-type failure was observed and failure path lay near the EMC/CuO interface with a little inclining to CuO at all case. On the other hand, in case of black oxide, quite different failure path was observed with respect to the distance from the tip of pre-crack and phase angle. Different failures occurred with oxide type is presumed to be due to the difference in microstructure of the oxides.

코발트의 제련과 리사이클링 (Extractive Metallurgy and Recycling of Cobalt)

  • 손호상
    • 한국분말재료학회지
    • /
    • 제29권3호
    • /
    • pp.252-261
    • /
    • 2022
  • Cobalt is a vital metal in the modern society because of its applications in lithium-ion batteries, super alloys, hard metals, and catalysts. Further, cobalt is a representative rare metal and is the 30th most abundant element in the Earth's crust. This study reviews the current status of cobalt extraction and recycling processes, along with the trends in its production amount and use. Although cobalt occurs in a wide range of minerals, such as oxides and sulfides of copper and nickel ores, the amounts of cobalt in the minerals are too low to be extracted economically. The Democratic Republic of Congo (DRC) leads cobalt mining, and accounts for 68.9 % of the global cobalt reserves (142,000 tons in 2020). Cobalt is mainly extracted from copper-cobalt and nickel-cobalt concentrates and is occasionally extracted directly from the ore itself by hydro-, pyro-, and electro-metallurgical processes. These smelting methods are essential for developing new recycling processes to extract cobalt from secondary resources. Cobalt is mainly recycled from lithium-ion batteries, spent catalysts, and cobalt alloys. The recycling methods for cobalt also depend on the type of secondary cobalt resource. Major recycling methods from secondary resources are applied in pyro- and hydrometallurgical processes.

고고자료(考古資料)의 자연과학(自然科學) 응용(應用)(II) - 익산(益山) 미륵사지(彌勒寺址) 납유리(琉璃)의 제조(製造) 및 유통(流通) - (Application of Science for Interpreting Archaeological Materials(II) - Production and Flow of Lead Glass from Mireuksa Temple -)

  • 강형태;김성배;허우영;김규호
    • 헤리티지:역사와 과학
    • /
    • 제36권
    • /
    • pp.241-266
    • /
    • 2003
  • Glass pieces excavated from Mireuksa Temple dated $7^{th}$ century A.D. were characterized by chemical composition, specific gravity and melting point. Lead isotope ratios of lead glasses were also compared with those of lead ore to attribute which lead ore was delivered for making lead glass. It was known that some lead glasses found in Japan were similar with those of Mireuksa Temple as comparing the data of chemical composition and lead isotope ratios. Characteristics of lead glass from Mireuksa Temple Thirty five glass pieces of Mireuksa Temple were analyzed for five oxides and found that all was lead glass system(PbO-$SiO_2$) with the range of 70~79% for PbO and 20~28% for $SiO_2$. The concentrations of oxides such as $Al_2O_3$, $Fe_2O_3$ and CuO were below 0.4%, 0.3% and 0.9%, respectively. Principal component analysis(PCA) as a statistical method was carried out to classify glasses with the similarities of chemical concentrations. The result of PCA has shown that three groups of glasses were created according to the excavation positions and two major oxides(PbO and $SiO_2$) greatly contributed to the dispersion of glasses on principal component 1(PC1) axis and trace element oxides($Al_2O_3$ and $Fe_2O_3$) for PC2 axis. Most of lead glasses were greenish by the efficacy of iron and copper oxides and some showed yellowish-green. The gravity of lead glasses was about 4.4~5.4 and estimated melting point was near $670^{\circ}C$. Lead isotope ratios of glasses were analyzed and found quite close to a lead ore from the Bupyeong mine in Gyeonggi-do. Comparison with lead glasses found in Japan Lead glasses of Mireuksa Temple were compared with those of Japan on the basis of chemical and physical data. Chemical compositions of Japanese lead glasses dated $7^{th}{\sim}8^{th}$ century A.D. were nearly similar with those of Mireuksa Temple but lead isotope ratios of those were separated into two groups. Three distribution maps of lead ores of Korea, Japan and China with lead isotope ratios were applied for lead glasses found in Japan. The result have shown that the locations of lead glasses from Fukuoka Prefecture coincided with the region of northen part of Korea and similar with those of Mireuksa Temple and lead glasses from Nara Prefecture dated $8^{th}$ century A.D. were located in the region of Japanese lead ore. This research has demonstrated that lead glasses of Mireuksa Temple conveyed to Miyajidake site, Fukuoka Prefecture around $7^{th}$ century A.D. and glass melting pots and glass beads excavated from Nara Prefecture confirmed the first use of Japanese lead ore for production of lead glasses from the end of $7^{th}$ century A.D.

Nanodispersion-Strengthened Metallic Materials

  • Weissgaerber, Thomas;Sauer, Christa;Kieback, Bernd
    • 한국분말재료학회지
    • /
    • 제9권6호
    • /
    • pp.441-448
    • /
    • 2002
  • Dispersions of non-soluble ceramic particles in a metallic matrix can enhance the strength and heat resistance of materials. With the advent of mechanical alloying it became possible to put the theoretical concept into practice by incorporating very fine particles in a flirty uniform distribution into often oxidation- and corrosion- resistant metal matrices. e.g. superalloys. The present paper will give an overview about the mechanical alloying technique as a dry, high energy ball milling process for producing composite metal powders with a fine controlled microstructure. The common way is milling of a mixture of metallic and nonmetallic powders (e.g. oxides. carbides, nitrides, borides) in a high energy ball mill. The heavy mechanical deformation during milling causes also fracture of the ceramic particles to be distributed homogeneously by further milling. The mechanisms of the process are described. To obtain a homogeneous distribution of nano-sized dispersoids in a more ductile matrix (e.g. aluminium-or copper based alloys) a reaction milling is suitable. Dispersoid can be formed in a solid state reaction by introducing materials that react with the matrix either during milling or during a subsequent heat treatment. The pre-conditions for obtaining high quality materials, which require a homogeneous distribution of small dis-persoids, are: milling behaviour of the ductile phase (Al, Cu) will be improved by the additives (e.g. graphite), homogeneous introduction of the additives into the granules is possible and the additive reacts with the matrix or an alloying element to form hard particles that are inert with respect to the matrix also at elevated temperatures. The mechanism of the in-situ formation of dispersoids is described using copper-based alloys as an example. A comparison between the in-situ formation of dispersoids (TiC) in the copper matrix and the milling of Cu-TiC mixtures is given with respect to the microstructure and properties, obtained.