• Title/Summary/Keyword: Copper oxide nanoparticles

Search Result 39, Processing Time 0.026 seconds

Synthesis of Cu Sintering Paste Using Growth of Nanofiber on Cu Microparticles Mixed with Formic Acid (포름산 혼합 나노섬유 성장 구리마이크로입자를 이용한 구리 소결 페이스트 합성)

  • Young Un Jeon;Ji Woong Chang
    • Applied Chemistry for Engineering
    • /
    • v.35 no.2
    • /
    • pp.96-99
    • /
    • 2024
  • A sintering paste for bonding copper plates was synthesized using Cu formate nanofibers on Cu microparticles, mixed with formic acid. Copper oxide nanofibers of 10 ㎛ grown at 400 ℃ on Cu microparticles on the surface were transformed into copper formate nanofibers through the mixing of formic acid. Compared to Cu bulk particles or nanoparticles, Cu formate on Cu microparticles decomposed into metallic Cu at a lower temperature of 210 ℃, facilitating the sintering of copper paste. The growth of nanofiber on Cu microparticles allowed for an increase in the reaction rate of formation to copper formate, aggregating surface area, and decomposition rate of copper formate, resulting in fast sintering.

Synthesis of Metal Nanoparticles for the Application of Electronic Device (전자장치 응용을 위한 금속(은, 구리) 나노입자의 합성)

  • Jun, Byung-Ho;Cho, Su-Hwan;Cho, Jeong-Min;Kim, Seong-Eun;Kim, Dong-Hoon;Kim, Seong-Jin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.53-53
    • /
    • 2010
  • The development of synthetic pathway to produce a highly yield nanoparticles is an important aspect of industrial technology. Herein, we report a simple, rapid approach to synthesize organic-soluble Cu and Ag nanoparticles in colloidal method for the application in a conductive pattern using inkjet printing. The silver nanoparticles have been synthesized in highly concentrated organic phase. The Cu nanoparticles have been synthesized by the reducing of the copper oxide materials using acid molecules in high concentrated organic phase. Their sintering and electric conductivity properties were investigated by melting process between $200^{\circ}C$ and $250^{\circ}C$ for application to printed electronics.

  • PDF

Mo,Cu-doped CeO2 as Anode Material of Solid Oxide Fuel Cells (SOFCs) using Syngas as Fuel

  • Diaz-Aburto, Isaac;Hidalgo, Jacqueline;Fuentes-Mendoza, Eliana;Gonzalez-Poggini, Sergio;Estay, Humberto;Colet-Lagrille, Melanie
    • Journal of Electrochemical Science and Technology
    • /
    • v.12 no.2
    • /
    • pp.246-256
    • /
    • 2021
  • Mo,Cu-doped CeO2 (CMCuO) nanopowders were synthesized by the nitrate-fuel combustion method aiming to improve the electrical and electrochemical properties of its Mo-doped CeO2 (CMO) parent by the addition of copper. An electrical conductivity of ca. 1.22·10-2 S cm-1 was measured in air at 800℃ for CMCuO, which is nearly 10 times higher than that reported for CMO. This increase was associated with the inclusion of copper into the crystal lattice of ceria and the presence of Cu and Cu2O as secondary phases in the CMCuO structure, which also could explain the increase in the charge transfer activities of the CMCuO based anode for the hydrogen and carbon monoxide electro-oxidation processes compared to the CMO based anode. A maximum power density of ca. 120 mW cm-2 was measured using a CMCuO based anode in a solid oxide fuel cell (SOFC) with YSZ electrolyte and LSM-YSZ cathode operating at 800℃ with humidified syngas as fuel, which is comparable to the power output reported for other SOFCs with anodes containing copper. An increase in the area specific resistance of the SOFC was observed after ca. 10 hours of operation under cycling open circuit voltage and polarization conditions, which was attributed to the anode delamination caused by the reduction of the Cu2O secondary phase contained in its microstructure. Therefore, the addition of a more electroactive phase for hydrogen oxidation is suggested to confer long-term stability to the CMCuO based anode.

A modified electrode by a facile green preparation of reduced graphene oxide utilizing olive leaves extract

  • Baioun, Abeer;Kellawi, Hassan;Falah, Ahamed
    • Carbon letters
    • /
    • v.24
    • /
    • pp.47-54
    • /
    • 2017
  • Different phytochemicals obtained from various natural plant sources are used as reduction agents for preparing gold, copper, silver and platinum nanoparticles. In this work a green method of reducing graphene oxide (rGO) by an inexpensive, effective and scalable method using olive leaf aqueous extract as the reducing agent, was used to produce rGO. Both GO and rGO were prepared and investigated by ultraviolet and visible spectroscopy, Fourier-transform infrared, scanning electron microscopy, atomic force microscopy, thermogravimetric analysis, cyclic voltammetry, X-ray photoelectron spectra, electrochemical impedance spectroscopy and powder X-ray diffraction.

Study on the Catalytic Properties of Copper Oxide Nanoparticles Synthesized by Levitational Gas Condensation (LGC) Method

  • Uhm, Y.R.;Lee, M.K.;Rhee, C.K.
    • Journal of the Korean Magnetics Society
    • /
    • v.17 no.2
    • /
    • pp.99-102
    • /
    • 2007
  • The Cu oxide nano powders were synthesized by levitational gas condensation (LGC) method and their high heterogeneous catalytic effects of oxidation of 2,3,5-trimethyl-1,4-hydroquinone (TMHQ) and catalase activity were studied. The nano powders consist of mainly $Cu_2O$. The catalytic effect which was clarified by the oxidation of TMHQ and the activity of catalase, was found to depend on the amount of $Cu_2O$ phase and the particle size.

Observation of Electrocatalytic Amplification of Iridium Oxide (IrOx) Single Nanoparticle Collision on Copper Ultramicroelectrodes

  • Choi, Yong Soo;Jung, Seung Yeon;Joo, Jin Woo;Kwon, Seong Jung
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.8
    • /
    • pp.2519-2522
    • /
    • 2014
  • Recently, the observation of the electrocatalytic behavior of individual nanoparticles (NPs) by electrochemical amplification method has been reported. For example, the Iridium oxide ($IrO_x$) NP collision on the Pt UME was observed via electrocatalytic water oxidation. However, the bare Pt UME had poor reproducibility for the observation of NP collision signal and required an inconvenient surface pre-treatment for the usage. In this manuscript, we has been investigated other metal electrode such as Cu UME for the reproducible data analysis and convenient use. The $IrO_x$ NP collision was successively observed on the bare Cu UME and the reproducibility in collision frequency was improved comparing with previous case using the $NaBH_4$ pre-treated Pt UME. Also, the adhesion coefficient between NP and the Cu UME was studied for better understanding of the single NP collision system.

A new model for curbing filtrate loss in dynamic application of nano-treated aqueous mud systems

  • Okoro, Emmanuel E.;Oladejo, Bukola R.;Sanni, Samuel E.;Obomanu, Tamunotonjo;Ibe, Amarachukwu A.;Orodu, Oyinkepreye D.;Olawole, Olukunle C.
    • Advances in nano research
    • /
    • v.9 no.1
    • /
    • pp.59-67
    • /
    • 2020
  • Filter cake formation during rotary drilling operation is an unavoidable scenario, hence there is need for constant improvement in the approaches used in monitoring the cake thickness growth in order to prevent drill-string sticking. This study proposes an improved model that predicts the growth of mud cake thickness overtime with the consideration of the addition of nanoparticles in the formulated drilling fluid system. Ferric oxide, titanium dioxide and copper oxide nanoparticles were used in varying amounts (2 g, 4 g and 6 g), and filtration data were obtained from the HPHT filtration test. The filter cakes formed were further analyzed with scanning electron microscope to obtain the morphological characteristics. The data obtained was used to validate the new filtrate loss model. This model specifically presents the concept of time variation in filter cake formation as against the previous works of constant and definite time. Regression coefficient which is a statistical measure was used to validate the new model and the predicted results were compared with the API model. The new model showed R2 values of 99.9%, and the predictions from the proposed filtration model can be said to be more closely related to the experimental data than that predicted from the API model from the SSE and RMSE results.

Characteristics of photo-thermal reduced Cu film using photographic flash light

  • Kim, Minha;Kim, Donguk;Hwang, Soohyun;Lee, Jaehyeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.293.1-293.1
    • /
    • 2016
  • Various materials including conductive, dielectric, and semi-conductive materials, constitute suitable candidates for printed electronics. Metal nanoparticles (e.g. Ag, Cu, Ni, Au) are typically used in conductive ink. However, easily oxidized metals, such as Cu, must be processed at low temperatures and as such, photonic sintering has gained significant attention as a new low-temperature processing method. This method is based on the principle of selective heating of a strongly absorbent film, without light-source-induced damage to the transparent substrate. However, Cu nanoparticles used in inks are susceptible to the growth of a native copper-oxide layer on their surface. Copper-oxide-nanoparticle ink subjected to a reduction mechanism has therefore been introduced in an attempt to achieve long-term stability and reliability. In this work, a flash-light sintering process was used for the reduction of an inkjet-printed Cu(II)O thin film to a Cu film. Using a photographic lighting instrument, the intensity of the light (or intense pulse light) was controlled by the charged power (Ws). The resulting changes in the structure, as well as the optical and electrical properties of the light-irradiated Cu(II)O films, were investigated. A Cu thin film was obtained from Cu(II)O via photo-thermal reduction at 2500 Ws. More importantly, at one shot of 3000 Ws, a low sheet resistance value ($0.2527{\Omega}/sq.$) and a high resistivity (${\sim}5.05-6.32{\times}10^{-8}{\Omega}m$), which was ~3.0-3.8 times that of bulk Cu was achieved for the ~200-250-nm-thick film.

  • PDF

Novel solvothermal approach to hydrophilic nanoparticles of late transition elements and its evaluation by nanoparticle tracking analysis

  • Dutilleul, Marion Collart;Seisenbaeva, Gulaim A.;Kessler, Vadim G.
    • Advances in nano research
    • /
    • v.2 no.2
    • /
    • pp.77-88
    • /
    • 2014
  • Solvothermal treatment of late transition metal acetylacetonates in a novel medium composed either of pure acetophenone or acetophenone mixtures with amino alcohols offers a general approach to uniform hydrophilic metal nanoparticles with high crystallinity and low degree of aggregation. Both pure metal and mixed-metal particles can be accesses by this approach. The produced materials have been characterized by SEM-EDS, TEM, FTIR in the solid state and by Nanoparticle Tracking Analysis in solutions. The chemical mechanisms of the reactions producing nanoparticles has been followed by NMR. Carrying out the process in pure acetophenone produces palladium metal, copper metal with minor impurity of $Cu_2O$, and NiO. The synthesis starting from the mixtures of Pd and Ni acetylacetonates with up to 20 mol% of Pd, renders in minor yield the palladium-based metal alloy along with nickel oxide as the major phase. Even the synthesis starting from a mixed solution of $Cu(acac)_2$ and $Ni(acac)_2$ produces oxides as major products. The situation is improved when aminoalcohols such as 2-aminoethanol or 2-dimethylamino propanol are added to the synthesis medium. The particles in this case contain metallic elements and pairs of individual metals (not metal alloys) when produced from mixed precursor solutions in this case.

Anodic Stripping Voltammetric Detection of Arsenic(III) at Platinum-Iron(III) Nanoparticle Modified Carbon Nanotube on Glassy Carbon Electrode

  • Shin, Seung-Hyun;Hong, Hun-Gi
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.11
    • /
    • pp.3077-3083
    • /
    • 2010
  • The electrochemical detection of As(III) was investigated on a platinum-iron(III) nanoparticles modified multiwalled carbon nanotube on glassy carbon electrode(nanoPt-Fe(III)/MWCNT/GCE) in 0.1 M $H_2SO_4$. The nanoPt-Fe(III)/MWCNT/GCE was prepared via continuous potential cycling in the range from -0.8 to 0.7 V (vs. Ag/AgCl), in 0.1 M KCl solution containing 0.9 mM $K_2PtCl_6$ and 0.6 mM $FeCl_3$. The Pt nanoparticles and iron oxide were co-electrodeposited into the MWCNT-Nafion composite film on GCE. The resulting electrode was examined by cyclic voltammetry (CV), scanning electron microscopy (SEM), and anodic stripping voltammetry (ASV). For the detection of As(III), the nanoPt-Fe(III)/MWCNT/GCE showed low detection limit of 10 nM (0.75 ppb) and high sensitivity of $4.76\;{\mu}A{\mu}M^{-1}$, while the World Health Organization's guideline value of arsenic for drinking water is 10 ppb. It is worth to note that the electrode presents no interference from copper ion, which is the most serious interfering species in arsenic detection.