• Title/Summary/Keyword: Copper growth

Search Result 470, Processing Time 0.028 seconds

Thin film solar cells (박막형 태양전지)

  • 김동섭;이수홍
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.5 no.1
    • /
    • pp.67-77
    • /
    • 1995
  • Abstract The principal factor affecting the increased penetration of photovoltaics into the marketplace is cost. For traditional crystalline silicon modules, half of the cost is that of the silicon wafers. As a result much effort has centered on reducing this cost by the use of thin film technologies. Substantial technical progress has been made towards improving the efficiencies of polycrystalline thin film solar cells to reduce the production costs. Progress in semiconductor deposition techniques has also been rapid. The most mature of these are based on polycrystalline silicon (p - Si), amorphous silicon (a - Si), copper indium diselenide $SuInSe_2$(CIS), and cadmium telluride (CdTe). This paper explores the recent advances in the development of polycrystalline thin film solar cells.

  • PDF

Electrochemical properties and crystallization of $Li_{2}O-P_{2}O_{5}-Bi_{2}O_{3}-V_{2}O_{5}$ Glass ($Li_{2}O-P_{2}O_{5}-Bi_{2}O_{3}-V_{2}O_{5}$유리의 결정화와 전기화학적 특성 변화)

  • 손명모;이헌수;구할본;김윤선
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.550-553
    • /
    • 2001
  • Li$_2$O-P$_2$O$_{5}$-Bi$_2$O$_3$-V$_2$O$_{5}$ glass containing glass former, P$_2$O$_{5}$ and Bi$_2$O$_3$ was prepard by melting the glass batch in pt. erucible followed by quenching on the copper plate. We found that Li$_2$O-P$_2$O$_{5}$-Bi$_2$O$_3$-V$_2$O$_{5}$ g1ass-ceramics obtained from the crystallization of glass showed significantly higher capacity and longer cycle life tham LiV$_3$O$_{8}$ made from powder synthesis. In this paper, we described crystallization process and LiV$_3$O$_{8}$ crystal growth in glass matrix by increasing temperature. The electrochemical properties were strongly affected by LiV$_3$O$_{8}$ crystal growth in matrix.rowth in matrix.

  • PDF

Effective Control of CH4/H2 Plasma Condition to Synthesize Graphene Nano-walls with Controlled Morphology and Structural Quality

  • Park, Hyun Jae;Shin, Jin-ha;Lee, Kang-il;Choi, Yong Sup;Song, Young Il;Suh, Su Jeong;Jung, Yong Ho
    • Applied Science and Convergence Technology
    • /
    • v.26 no.6
    • /
    • pp.179-183
    • /
    • 2017
  • The direct growth method is simplified manufacturing process used to avoid damages and contaminants from the graphene transfer process. In this paper, graphene nano-walls (GNWs) were direct synthesized using electron cyclotron resonance (ECR) plasma by varying the $CH_4/H_2$ gas flow rate on the copper foil at low temperature (without substrate heater). Investigations were carried out of the changes in the morphology and characteristic of GNWs due to the relative intensity of hydrocarbon radical and molecule in the ECR plasma. The results of these investigations were then discussed.

A STUDY OF MAGNETIC ALIGNMENT OF DIE-UPSET Pr-Fe-B-Cu MAGNETS

  • Kwon, H.W.;Ma, T.J.;Harris, I.R.
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.5
    • /
    • pp.416-420
    • /
    • 1995
  • An attempt has been made to investigate the mechanism of magnetic alignment in the magnets produced by upset forging the $Pr_{20}Fe_{74}B_{4}Cu_{2}$ cast bulk alloy. Upset forging of the cast alloy was carried out for 20 sec to an 80 % thickness reduction (strain rate : $4{$\times}10^{-2}s^{-1}$) in an open die configuration at varying temperatures in the range $600^{\circ}-900^{\circ}C$. It has been found that the upset forging process at temperatures above $800^{\circ}C$ can achieve a magnetic alignment to a great extent from copper-containing Pr-Fe- B-type cast ingot. The growth manner of the ferromagnetic $Pr_{2}Fe_{14}B$ matrix grain in Pr-Fe-B-type alloys was studied by examining the morphology change of the matrix grain in sintered body, and it was found that the matrix grains grew in anisotropic manner such that the grain grew more rapidly along the a- or b-axis than along the c-axis. This anisotropic grain growth led to the plate-like shape of the matrix grain. The magnetic alignment during the upset forging was attributed to grain boundary gliding of the plate-like grains, and the geometry of the grains in the cast ingot and the presence of a large amount of the praseodymium-rich grain boundary phase were thought to play a key role in the achievement of magnetic alignment.

  • PDF

Antibacterial effect of natural dyed fabrics using Artemisia princeps extract against antibiotic-resistant strains (쑥 추출액을 이용한 천연염색 직물의 항생제 내성균주에 대한 항균효능)

  • Choi, Nayoung
    • Journal of the Korea Fashion and Costume Design Association
    • /
    • v.23 no.4
    • /
    • pp.95-103
    • /
    • 2021
  • This study aims to examine the antibacterial effects of cotton and silk fabrics naturally dyed with Artemisia princeps extract on antibiotic-resistant strains of bacteria. The concentrated natural dye of the Artemisia princeps extract was made at the liquor ratio of 1:10 at 40-60℃ for 60 minutes. The concentration of FeSO4·7H2O, Al2(SO4)3, and CuSO4 5H2O mordant was 3% (owf), and the liquor ratio was 1:20. In order to experiment on the antimicrobial activity of the naturally dyed fabrics, Methicillin-resistant Staphylococcus aureus (MRSA) ATCC 33591, was used by breeding it in Brain Heart Infusion Agar (BHA) containing Oxacillin (2㎍/ml), Fungizone (2.5㎍/ml), and Brain Heart Infusion broth (BHI; Detroit, MI, USA). As a result of examining the bacterial growth reduction rate on dyed cotton and silk fabrics against antibiotic-resistant strains, it was found that the copper mordant in cotton fabric shows the highest antibacterial activity with a bacterial growth reduction rate of 99.9%, and the non-mordant cotton fabric shows the lowest antibacterial activity with a reduction rate of 18.6%. In the case of the naturally dyed silk fabric, it indicates the highest reduction rate of strains in the Al mordanting (94.9%), and Cu mordanting (99.9%).

Effects of a Chelated Copper as Growth Promoter on Performance and Carcass Traits in Pigs

  • Zhao, J.;Allee, G.;Gerlemann, G.;Ma, L.;Gracia, M.I.;Parker, D.;Vazquez-Anon, M.;Harrel, R.J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.7
    • /
    • pp.965-973
    • /
    • 2014
  • Three studies were conducted to investigate whether a chelated Cu can replace $CuSO_4$ as a growth promoter in pigs. In Exp. 1, a total of 240 piglets (Large White${\times}$Landrace, $7.36{\pm}0.10kg$) were randomly allocated to 1 of 3 treatments with 8 replicates and 10 piglets per pen. Treatments included a NRC control ($CuSO_4$, 6 mg/kg), two Cu supplementations from either $CuSO_4$ or $Cu(HMTBa)_2$ at 170 mg/kg. Pigs fed $Cu(HMTBa)_2$ were 6.0% heavier than pigs fed either the NRC control or 170 mg/kg $CuSO_4$ (p = 0.03) at the end of the experiment. During the 42 days of experimental period, pigs fed $Cu(HMTBa)_2$ gained 9.0% more (p = 0.01), tended to eat more feed (p = 0.09), and had better feed efficiency (p = 0.06) than those fed $CuSO_4$. Compared with the 6 mg/kg $CuSO_4$ NRC control, liver Cu was increased 2.7 times with 170 mg/kg $CuSO_4$ supplementation, and was further increased with $Cu(HMTBa)_2$ (4.5 times, p<0.05). In Exp. 2, a total of 616 crossbred piglets (PIC, $5.01{\pm}0.25kg$) were randomly allocated to 1 of 4 treatments with 7 replicates and 22 piglets per pen. Treatments included a NRC control (from $CuSO_4$), and three pharmaceutical levels of Cu (150 mg/kg) supplemented either from C$CuSO_4$, tri-basic copper chloride ($Cu_2[OH]_3C1$), or $Cu(HMTBa)_2$. Pigs fed $CuSO_4$ or $Cu(HMTBa)_2$ had better feed efficiency (p = 0.01) and tended to gain more (p = 0.08) compared with those fed the NRC control. Pigs fed $Cu_2[OH]_2C1$ were intermediate. Pigs fed $Cu(HMTBa)_2$ had the highest liver Cu, which was significantly higher than those fed ($Cu_2[OH]_3C1$) or the negative control (p = 0.01). In Exp. 3, a total of 1,048 pigs (PIC, $32.36{\pm}0.29kg$) were allotted to 6 treatments with 8 replicates per treatment and 20 to 22 pigs per pen. The treatments included a NRC control with 4 mg/kg Cu from $CuSO_4$, a positive control with 160 mg/kg Cu from $CuSO_4$, and incremental levels of $Cu(HMTBa)_2$ at 20, 40, 80, and 160 mg/kg. During the overall experimental period of 100 days, no benefit from 160 mg/kg $CuSO_4$ was observed. Pigs fed $Cu(HMTBa)_2$ had increased ADG (linear and quadratic, $p{\leq}0.05$) and feed efficiency (linear and quadratic, $p{\leq}0.05$) up to 80 mg/kg and no further improvement was observed at 160 mg/kg for the whole experimental period. Pigs fed 80 mg/kg $Cu(HMTBa)_2$ weighed 1.8 kg more (p = 0.07) and were 2.3 kg heavier in carcass (p<0.01) compared with pigs fed 160 mg/kg $CuSO_4$. In addition, loin depth was increased with increased $Cu(HMTBa)_2$ supplementation with pigs fed 80 mg/kg $Cu(HMTBa)_2$ had the greatest loin depth (p<0.05). In summary, $Cu(HMTBa)_2$ can be used to replace high $CuSO_4$ as a growth promoter in nursery and grower-finisher pigs.

Solid Electrolytes Characteristics Based on Cu-Ge-Se for Analysis of Programmable Metallization Cell

  • Nam, Ki-Hyun;Chung, Hong-Bay
    • Transactions on Electrical and Electronic Materials
    • /
    • v.9 no.6
    • /
    • pp.227-230
    • /
    • 2008
  • Programmable Metallization Cell (PMC) Random Access Memory is based on the electrochemical growth and removal of electrical nanoscale pathways in thin films of solid electrolytes. In this study, we investigated the nature of thin films formed by the photo doping of copper ions into chalcogenide materials for use in programmable metallization cell devices. These devices rely on metal ions transport in the film so produced to create electrically programmable resistance states. The results imply that a Cu-rich phase separates owing to the reaction of Cu with free atoms from chalcogenide materials.

Prediction of Metal Ion Binding Sites in Proteins from Amino Acid Sequences by Using Simplified Amino Acid Alphabets and Random Forest Model

  • Kumar, Suresh
    • Genomics & Informatics
    • /
    • v.15 no.4
    • /
    • pp.162-169
    • /
    • 2017
  • Metal binding proteins or metallo-proteins are important for the stability of the protein and also serve as co-factors in various functions like controlling metabolism, regulating signal transport, and metal homeostasis. In structural genomics, prediction of metal binding proteins help in the selection of suitable growth medium for overexpression's studies and also help in obtaining the functional protein. Computational prediction using machine learning approach has been widely used in various fields of bioinformatics based on the fact all the information contains in amino acid sequence. In this study, random forest machine learning prediction systems were deployed with simplified amino acid for prediction of individual major metal ion binding sites like copper, calcium, cobalt, iron, magnesium, manganese, nickel, and zinc.

A study on the characteristics of SrS:Cu TFEL devices prepared by hot wall deposition

  • Lee Sang-Tae
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.4
    • /
    • pp.514-519
    • /
    • 2006
  • SrS:Cu, Cl thin films have been grown by the hot wall technique with S furnace placed on the outside of the growth chamber in order to investigate the crystallographic and optical characteristics. The films have a good crystallinity independent of CuCl wall temperature and PL characteristics showed a peak assigned by the transition form $3d^94s^1\;(^3Eg)$ to $3d^{10}\;(^1A_{1g})$ of $Cu^+$ center. It has also been found that. from the PLE spectra, $Cu^+$ luminescent centers are doped in the host materials. The EL emission from SrS:Cu-based device showed a greenish-blue but shifted to short wavelength compared to SrS:Ce-based EL. The device was obtained the maximum luminance of $110cd/m^2$ and the maximum luminous efficiency of $0.1\;lm/W$ at $V_{40}$.

EFFECT OF INTERMETALLIC COMPOUND ON MECHANICAL PROPERTIES OF Al-Cu DISSIMILAR BRAZING JOINT

  • Koyama, Ken;Shinozaki, Kenji;Ikeda, Kenji;Kuroki, Hidenori
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.555-560
    • /
    • 2002
  • Brazing of Al to Cu using AI-Si-Mg-Bi brazing alloy has been carried out in the vacuum furnace. In the bonded interlayer, there were two kinds of intermetallic compounds. One of these intermetallic compounds was e phase and the other was b phase. The growth of b phase was controlled by diffusion Al into Cu. Deformation behavior of Al-Cu brazing joint was brittle without deformation of the base metal. Shear strength of the joint was only about 20MPa. The shear specimen broken in the intermetallic compound, which was mainly e phase. Shear strength did not depend on the bonding temperature.

  • PDF