References
- Andreini C, Bertini I, Rosato A. A hint to search for metalloproteins in gene banks. Bioinformatics 2004;20:1373-1380. https://doi.org/10.1093/bioinformatics/bth095
- Clapp LA, Siddons CJ, Whitehead JR, VanDerveer DG, Rogers RD, Griffin ST, et al. Factors controlling metal-ion selectivity in the binding sites of calcium-binding proteins: the metal-binding properties of amide donors. A crystallographic and thermodynamic study. Inorg Chem 2005;44:8495-8502. https://doi.org/10.1021/ic050632s
- Kaur-Atwal G, Weston DJ, Green PS, Crosland S, Bonner PL, Creaser CS. On-line capillary column immobilised metal affinity chromatography/electrospray ionisation mass spectrometry for the selective analysis of histidine-containing peptides. J Chromatogr B Analyt Technol Biomed Life Sci 2007;857:240-245. https://doi.org/10.1016/j.jchromb.2007.07.025
- Feng S, Pan C, Jiang X, Xu S, Zhou H, Ye M, et al. Fe3+ immobilized metal affinity chromatography with silica monolithic capillary column for phosphoproteome analysis. Proteomics 2007;7:351-360. https://doi.org/10.1002/pmic.200600045
- Osborn MT, Herrin K, Buzen FG, Hurlburt BK, Chambers TC. Electrophoretic mobility shift assay coupled with immunoblotting for the identification of DNA-binding proteins. Biotechniques 1999;27:887-890, 892.
- Smith MF Jr, Delbary-Gossart S. Electrophoretic mobility shift assay (EMSA). Methods Mol Med 2001;50:249-257.
- Korshin G, Chow CW, Fabris R, Drikas M. Absorbance spectroscopy-based examination of effects of coagulation on the reactivity of fractions of natural organic matter with varying apparent molecular weights. Water Res 2009;43:1541-1548. https://doi.org/10.1016/j.watres.2008.12.041
- Nigg PE, Pavlovic J. Characterization of multi-subunit protein complexes of human MxA using non-denaturing polyacrylamide gel-electrophoresis. J Vis Exp 2016;(116):e54683.
- Jensen MR, Petersen G, Lauritzen C, Pedersen J, Led JJ. Metal binding sites in proteins: identification and characterization by paramagnetic NMR relaxation. Biochemistry 2005;44:11014-11023. https://doi.org/10.1021/bi0508136
- Rondeau P, Sers S, Jhurry D, Cadet F. Sugar interaction with metals in aqueous solution: indirect determination from infrared and direct determination from nuclear magnetic resonance spectroscopy. Appl Spectrosc 2003;57:466-472. https://doi.org/10.1366/00037020360626023
- Zhu D, Herbert BE, Schlautman MA, Carraway ER. Characterization of cation-pi interactions in aqueous solution using deuterium nuclear magnetic resonance spectroscopy. J Environ Qual 2004;33:276-284. https://doi.org/10.2134/jeq2004.2760
- Butler M, Cabrera GM. A mass spectrometry-based method for differentiation of positional isomers of monosubstituted pyrazine N-oxides using metal ion complexes. J Mass Spectrom 2015;50:136-144. https://doi.org/10.1002/jms.3506
- Lin CT, Lin KL, Yang CH, Chung IF, Huang CD, Yang YS. Protein metal binding residue prediction based on neural networks. Int J Neural Syst 2005;15:71-84. https://doi.org/10.1142/S0129065705000116
- Passerini A, Punta M, Ceroni A, Rost B, Frasconi P. Identifying cysteines and histidines in transition-metal-binding sites using support vector machines and neural networks. Proteins 2006;65:305-316. https://doi.org/10.1002/prot.21135
- Lippi M, Passerini A, Punta M, Rost B, Frasconi P. Metal-Detector: a web server for predicting metal-binding sites and disulfide bridges in proteins from sequence. Bioinformatics 2008;24:2094-2095. https://doi.org/10.1093/bioinformatics/btn371
- Deng H, Chen G, Yang W, Yang JJ. Predicting calcium-binding sites in proteins: a graph theory and geometry approach. Proteins 2006;64:34-42. https://doi.org/10.1002/prot.20973
- Schymkowitz JW, Rousseau F, Martins IC, Ferkinghoff-Borg J, Stricher F, Serrano L. Prediction of water and metal binding sites and their affinities by using the Fold-X force field. Proc Natl Acad Sci U S A 2005;102:10147-10152. https://doi.org/10.1073/pnas.0501980102
- Chen Z, Wang Y, Zhai YF, Song J, Zhang Z. ZincExplorer: an accurate hybrid method to improve the prediction of zincbinding sites from protein sequences. Mol Biosyst 2013;9:2213-2222. https://doi.org/10.1039/c3mb70100j
- Levy R, Edelman M, Sobolev V. Prediction of 3D metal binding sites from translated gene sequences based on remote-homology templates. Proteins 2009;76:365-374. https://doi.org/10.1002/prot.22352
- Passerini A, Lippi M, Frasconi P. MetalDetector v2.0: predicting the geometry of metal binding sites from protein sequence. Nucleic Acids Res 2011;39:W288-W292. https://doi.org/10.1093/nar/gkr365
- Murphy LR, Wallqvist A, Levy RM. Simplified amino acid alphabets for protein fold recognition and implications for folding. Protein Eng 2000;13:149-152. https://doi.org/10.1093/protein/13.3.149
- Parisi G, Echave J. Structural constraints and emergence of sequence patterns in protein evolution. Mol Biol Evol 2001;18:750-756. https://doi.org/10.1093/oxfordjournals.molbev.a003857
- Tainer JA, Roberts VA, Getzoff ED. Metal-binding sites in proteins. Curr Opin Biotechnol 1991;2:582-591. https://doi.org/10.1016/0958-1669(91)90084-I
- Zuo Y, Lv Y, Wei Z, Yang L, Li G, Fan G. iDPF-PseRAAAC: a web-server for identifying the defensin peptide family and subfamily using pseudo reduced amino acid alphabet composition. PLoS One 2015;10:e0145541. https://doi.org/10.1371/journal.pone.0145541
- Lu MF, Xie Y, Zhang YJ, Xing XY. Effects of cofactors on conformation transition of random peptides consisting of a reduced amino acid alphabet. Protein Pept Lett 2015;22:579-585. https://doi.org/10.2174/0929866522666150520150230
- Liu B, Xu J, Lan X, Xu R, Zhou J, Wang X, et al. iDNA-Prot I dis: identifying DNA-binding proteins by incorporating amino acid distance-pairs and reduced alphabet profile into the general pseudo amino acid composition. PLoS One 2014;9:e106691. https://doi.org/10.1371/journal.pone.0106691
- Feng PM, Chen W, Lin H, Chou KC. iHSP-PseRAAAC: Identifying the heat shock protein families using pseudo reduced amino acid alphabet composition. Anal Biochem 2013;442:118-125. https://doi.org/10.1016/j.ab.2013.05.024
- Chakrabarti P, Pal D. The interrelationships of side-chain and main-chain conformations in proteins. Prog Biophys Mol Biol 2001;76:1-102. https://doi.org/10.1016/S0079-6107(01)00005-0
- Etchebest C, Benros C, Bornot A, Camproux AC, de Brevern AG. A reduced amino acid alphabet for understanding and designing protein adaptation to mutation. Eur Biophys J 2007;36:1059-1069. https://doi.org/10.1007/s00249-007-0188-5
- Weathers EA, Paulaitis ME, Woolf TB, Hoh JH. Reduced amino acid alphabet is sufficient to accurately recognize intrinsically disordered protein. FEBS Lett 2004;576:348-352. https://doi.org/10.1016/j.febslet.2004.09.036
- The UniProt Consortium. UniProt: the universal protein knowledgebase. Nucleic Acids Res 2017;45:D158-D169. https://doi.org/10.1093/nar/gkw1099
- Li W, Godzik A. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 2006;22:1658-1659. https://doi.org/10.1093/bioinformatics/btl158
- Suzek BE, Wang Y, Huang H, McGarvey PB, Wu CH; UniProt Consortium. UniRef clusters: a comprehensive and scalable alternative for improving sequence similarity searches. Bioinformatics 2015;31:926-932. https://doi.org/10.1093/bioinformatics/btu739
- Cohen G, Hilario M, Sax H, Hugonnet S, Geissbuhler A. Learning from imbalanced data in surveillance of nosocomial infection. Artif Intell Med 2006;37:7-18. https://doi.org/10.1016/j.artmed.2005.03.002
- Cannata N, Toppo S, Romualdi C, Valle G. Simplifying amino acid alphabets by means of a branch and bound algorithm and substitution matrices. Bioinformatics 2002;18:1102-1108. https://doi.org/10.1093/bioinformatics/18.8.1102
- Rose GD, Geselowitz AR, Lesser GJ, Lee RH, Zehfus MH. Hydrophobicity of amino acid residues in globular proteins. Science 1985;229:834-838. https://doi.org/10.1126/science.4023714
- Zheng C, Wang M, Takemoto K, Akutsu T, Zhang Z, Song J. An integrative computational framework based on a two-step random forest algorithm improves prediction of zinc-binding sites in proteins. PLoS One 2012;7:e49716. https://doi.org/10.1371/journal.pone.0049716
- Frank E, Hall M, Trigg L, Holmes G, Witten IH. Data mining in bioinformatics using Weka. Bioinformatics 2004;20:2479-2481. https://doi.org/10.1093/bioinformatics/bth261
- Smith TC, Frank E. Introducing machine learning concepts with WEKA. Methods Mol Biol 2016;1418:353-378.
- Varma S, Simon R. Bias in error estimation when using cross-validation for model selection. BMC Bioinformatics 2006;7:91. https://doi.org/10.1186/1471-2105-7-91
- Sahiner B, Chan HP, Hadjiiski L. Classifier performance prediction for computer-aided diagnosis using a limited dataset. Med Phys 2008;35:1559-1570. https://doi.org/10.1118/1.2868757
- Liu H, Jiang H, Zheng R. The hybrid feature selection algorithm based on maximum minimum backward selection search strategy for liver tissue pathological image classification. Comput Math Methods Med 2016;2016:7369137.
- Mandal M, Mukhopadhyay A, Maulik U. Prediction of protein subcellular localization by incorporating multiobjective PSObased feature subset selection into the general form of Chou's PseAAC. Med Biol Eng Comput 2015;53:331-344. https://doi.org/10.1007/s11517-014-1238-7