• Title/Summary/Keyword: Copper exposure

Search Result 170, Processing Time 0.027 seconds

The Identification of HSC70 as a Biomarker for Copper Exposure in Medaka Fish (송사리 모델계에서 구리 노출에 대한 생물지표로서 HSC70의 동정)

  • Kim, Woo-Keun;Lee, Sung-Kyu;Kim, Jong-Sang
    • Environmental Analysis Health and Toxicology
    • /
    • v.22 no.3
    • /
    • pp.197-202
    • /
    • 2007
  • 구리는 환경에 광범위하게 존재하며, 생물체에게 필수적인 무기질이지만 고농도로 존재할 경우 독성을 발휘한다. 본 연구는 프로티옴 기술을 응용하여 수서태계에 구리와 같은 중금속의 존재 여부를 신속하게 평가하기 위한 생물지표를 발굴하기 위하여 수행되었다. 즉, 송사리(Oryzias latipes)를 이용하여 여러 농도의 구리용액(0.1, 1, 5 mg/L)에 24시간 노출시킨 다음, 머리부분에서 선택적으로 발현이 증가되는 단백질을 동정하고자 시도하였다. 본 시스템에서 유의적으로 발현이 증가하는 것으로 나타난 단백질은 beta-tubulin, heat shock cognate 70 (hsc70)이었으며, 이 결과의 일부를 semi-quantitative RT-PCR를 이용하여 확인하였다. 이와 같이 구리 처리에 특이적으로 발현이 증가된 송사리 단백질들은 노출평가를 위한 생물지표로서 개발을 위하여 더 연구할 가치가 있는 것으로 평가된다.

Hepatic Expression of Cu/Zn-Superoxide Dismutase Transcripts in Response to Acute Metal Exposure and Heat Stress in Hemibarbus mylodon (Teleostei: Cypriniformes)

  • Cho, Young-Sun;Bang, In-Chul;Lee, Il-Ro;Nam, Yoon-Kwon
    • Fisheries and Aquatic Sciences
    • /
    • v.12 no.3
    • /
    • pp.179-184
    • /
    • 2009
  • Hemibarbus mylodon (Cypriniformes) is an endemic freshwater fish species in the Korean peninsula, for which urgent conservation efforts are needed. To understand their stress responses in relation to metal toxicity and thermal elevation, we performed a real-time RT-PCR-based expression assay of hepatic copper/zinc-superoxide dismutase (Cu/Zn-SOD), a key antioxidant enzyme, in response to experimental heavy metal exposure or heat treatment. The transcription of hepatic Cu/Zn-SOD was differentially modulated by acute exposure to Cu, cadmium (Cd), or Zn. Exposure to each metal at $5{\mu}M$ for 24 h revealed that Cu stimulated the mRNA expression of Cu/Zn-SOD to a greater extent than the other two heavy metals. The elevation in Cu/Zn-SOD transcripts in response to Cu exposure was dose-dependent (0.5 to $5{\mu}M$). Time course analysis of Cu/Zn-SOD expression in response to Cd exposure ($5{\mu}M$) revealed a transient pattern up to day 7. Exposure to thermal stress (an increase from 22 to $30^{\circ}C$ at a rate of $1^{\circ}C/h$ followed by $30^{\circ}C$ for 18 h) did not significantly alter SOD transcription, although heat shock protein 90 kDa (HSP90) transcription was positively correlated with an increase in temperature.

Acute Toxicity Test of Heavy Metals Using Korean Freshwater Shrimp, Neocardina denticulata (국내 담수새우인 새뱅이 (Neocardina denticulata)를 이용한 중금속의 급성독성시험)

  • Ryu, Ji-Sung;Kim, Eun-Kyoung;Moon, Ye-Ryeon;Kim, Hyun-Mi;Kim, Hak-Joo;Choi, Kyung-Hee
    • Environmental Analysis Health and Toxicology
    • /
    • v.22 no.2 s.57
    • /
    • pp.171-175
    • /
    • 2007
  • Indigenous species means a species that is likely, due to historical presence, to occur at a specified site for some portion of its life span. Therefore, indigenous species can be useful as an indicator to assess environmental risk caused by hazardous chemicals in a specific site. So far a few toxicity studies using freshwater species which are indigenous to Korea have been carried out. In this study, a freshwater shrimp (Neocardina denticulata) indigenous to Korea was used for acute toxicity test of heavy metals. Neocardina denticulata were exposed to cadmium chloride $(CdCl_2)$, copper chloride $(CuCl_2)$ and zinc chloride $(ZnCl_2)$ using automatic flow-through system for 96 hours. The 96h LC50s were calculated as 0.043 $(0.042{\sim}0.045)mg\;CdCl_2/L,\;0.104(0.098{\sim}0.113)mg\; CuCl_2/L\;and\;2.021\;(1.633{\sim}2.594)mg\;ZnCl_2/L$. When compaired with some international standard species such as medaka(Oryzias latipes), Neocardina denticulata had high sensitivity. Therefore, this study suggested that Neocardina denticulata have possibilities for a sensitive test species to test heavy metal toxicity in aqua-system.

Evaluation of the sub-lethal toxicity of Cu, Pb, bisphenol A and polychlorinated biphenyl to the marine dinoflagellate Cochlodinium polykrikoides

  • Ebenezer, Vinitha;Ki, Jang-Seu
    • ALGAE
    • /
    • v.27 no.1
    • /
    • pp.63-70
    • /
    • 2012
  • Algae are sensitive to a wide range of pollutants, and are effective bioindicators in ecotoxicity assessments. Here, we evaluated the sub-lethal sensitivity of the marine dinoflagellate Cochlodinium polykrikoides upon exposure to copper (Cu), lead (Pb), bisphenol A (BPA), and Aroclor 1016 (polychlorinated biphenyl, PCB). Toxic effects were assessed by observations of the reduction in cell counts and chlorophyll a levels after exposure to each toxicant. C. polykrikoides displayed dose-dependent, sigmoidal responses when exposed to the tested chemicals. $EC_{50}$-72 h values for Cu, Pb, BPA, and PCB were 12.74, 46.70, 68.15, and $1.07mg\;L^{-1}$, respectively. PCB, which is an endocrine-disrupting chemical, was the most sensitive, proving its toxic effect on the dinoflagellate. This study provides baseline data on the toxic effects of commonly used heavy metals and endocrine-disrupting chemicals to a marine dinoflagellate.

A Study on Characteristics of Atmospheric Heavy Metals in Subway Station

  • Kim, Chun-Huem;Yoo, Dong-Chul;Kwon, Young-Min;Han, Woong-Soo;Kim, Gi-Sun;Park, Mi-Jung;Kim, Young-Soon;Choi, Dal-Woong
    • Toxicological Research
    • /
    • v.26 no.2
    • /
    • pp.157-162
    • /
    • 2010
  • In this study, we investigated the atmospheric heavy metal concentrations in the particulate matter inside the subway stations of Seoul. In particular, we examined the correlation between the heavy metals and studied the effect of the heavy metals on cell proliferation. In six selected subway stations in Seoul, particulate matter was captured at the platforms and 11 types of heavy metals were analyzed. The results showed that the mean concentration of iron was the highest out of the heavy metals in particulate matter, followed by copper, potassium, calcium, zinc, nickel, sodium, manganese, magnesium, chromium and cadmium in that order. The correlation analysis showed that the correlations between the heavy metals was highest in the following order: (Cu vs Zn), (Ca vs Na), (Ca vs Mn), (Ni vs Cr), (Na vs Mn), (Cr vs Cd), (Zn vs Cd), (Cu vs Cd), (Ni vs Cd), (Cu vs Ni), (K vs Zn), (Cu vs K), (Cu vs Cr), (K vs Cd), (Zn vs Cr), (K vs Ni), (Zn vs Ni), (K vs Cr), and (Fe vs Cu). The correlation coefficient between zinc and copper was 0.937, indicating the highest correlation. Copper, zinc, nickel, chromium and cadmium, which are generated from artificial sources in general, showed correlations with many of the other metals and the correlation coefficients were also relatively high. The effect of the heavy metals on cell proliferation was also investigated in this study. Cultured cell was exposed to 10 mg/l or 100 mg/l of iron, copper, calcium, zinc, nickel, manganese, magnesium, chromium and cadmium for 24 hours. The cell proliferation in all the heavy metal-treated groups was not inhibited at 10 mg/l of the heavy metal concentration. The only exception to this was with the cadmium-treated group which showed a strong cell proliferation inhibition. This study provides the fundamental data for the understanding of simultaneous heavy metal exposure tendency at the time of particulate matter exposure in subway stations and the identification of heavy metal sources. Moreover, this study can be used as the fundamental data for the cell toxicity study of the subway-oriented heavy metal-containing particulate matter.

Atmospheric Corrosion Behavior of Carbon Steel by the Outdoor Exposure Test for 10 Years in Korea

  • Yoo, Y.R.;Choi, S.H.;Kim, Y.S.
    • Corrosion Science and Technology
    • /
    • v.21 no.3
    • /
    • pp.184-199
    • /
    • 2022
  • Steel was exposed in an atmospheric environment, and atmospheric environmental factors that include chloride, humidity, SO2, NO2 etc. induced the corrosion of steel. Corrosivity categories classified by SO2 and chloride deposition rate were low, but those classified by TOW were high in the Korean Peninsula, and on these environmental categories, the corrosivity of atmospheres classified by corrosion rate in carbon steel was low medium, C2-C3, and medium, C3 for zinc, copper, and aluminum. This work performed the outdoor exposure test for 10 years at 14 areas in Korea and calculated the atmospheric corrosion rate of carbon steel. The atmospheric corrosion behavior of carbon steel is discussed based on the various corrosion factors. When the corrosion product forms on carbon steel by atmospheric corrosion, cracks may also be formed, and through these cracks, the environmental factors can penetrate into the interior of the product, detach some of the corrosion products and finally corrode locally. Thus, the maximum corrosion rate was about 7.3 times greater than the average corrosion rate. The color difference and glossiness of carbon steel by the 10 year-outdoor exposure tests are discussed based on the corrosion rate and the environmental factors.

Electrochmical Characteristics by Water Cavitation Peening of Cu Alloy (워터캐비테이션피닝된 동합금의 전기화학적 특성평가)

  • Kim, Seong-Jong;Han, Min-Su;Kim, Min-Sung
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.8
    • /
    • pp.1083-1090
    • /
    • 2012
  • Copper alloys are widely used for casting materials including ship's propellers and pump impellers as they provide high corrosion resistance. In addition, the demand for these alloys is increasing with rapid growth of offshore structures and exploitation of various substitute energy sources. However, they require regular maintenance because of erosion and cavitation damages induced by exposure to marine environment at high speed flows for a long period of time. Water cavitation peening have received attention as one of surface modifications for durability improvement of the copper alloys. This is a environment friendly technology without influence of heat and easily applicable to casting materials. In this research, water cavitation peening was employed in distilled water for copper alloy castings as a function of time and evaluation of corrosion resistance was followed in seawater for the modified surface by using electrochemical methods. The result suggests that the water cavitation peening for 2 minutes was found to be the optimal peening parameter in terms of durability and corrosion resistance.

Effects of Microbial Iron Reduction and Oxidation on the Immobilization and Mobilization of Copper in Synthesized Fe(III) Minerals and Fe-Rich Soils

  • Hu, Chaohua;Zhang, Youchi;Zhang, Lei;Luo, Wensui
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.4
    • /
    • pp.534-544
    • /
    • 2014
  • The effects of microbial iron reduction and oxidation on the immobilization and mobilization of copper were investigated in a high concentration of sulfate with synthesized Fe(III) minerals and red earth soils rich in amorphous Fe (hydr)oxides. Batch microcosm experiments showed that red earth soil inoculated with subsurface sediments had a faster Fe(III) bioreduction rate than pure amorphous Fe(III) minerals and resulted in quicker immobilization of Cu in the aqueous fraction. Coinciding with the decrease of aqueous Cu, $SO_4{^{2-}}$ in the inoculated red earth soil decreased acutely after incubation. The shift in the microbial community composite in the inoculated soil was analyzed through denaturing gradient gel electrophoresis. Results revealed the potential cooperative effect of microbial Fe(III) reduction and sulfate reduction on copper immobilization. After exposure to air for 144 h, more than 50% of the immobilized Cu was remobilized from the anaerobic matrices; aqueous sulfate increased significantly. Sequential extraction analysis demonstrated that the organic matter/sulfide-bound Cu increased by 52% after anaerobic incubation relative to the abiotic treatment but decreased by 32% after oxidation, indicating the generation and oxidation of Cu-sulfide coprecipitates in the inoculated red earth soil. These findings suggest that the immobilization of copper could be enhanced by mediating microbial Fe(III) reduction with sulfate reduction under anaerobic conditions. The findings have an important implication for bioremediation in Cu-contaminated and Fe-rich soils, especially in acid-mine-drainage-affected sites.

Some nanotoxicity effects of copper (60-80 nm) and copper oxide (40 nm) nanoparticles on Artemia salina

  • Isil Canan Cicek Cimen;Durali Danabas;Mehmet Ates
    • Advances in nano research
    • /
    • v.16 no.5
    • /
    • pp.501-508
    • /
    • 2024
  • In this study, nanotoxicity tests were made by exposure of Artemia salina to copper (Cu 60-80 nm) and copper oxide (CuO 40 nm) nanoparticles (NPs) at different concentrations (0.2, 1, 5, 10, 25, and 50 mg/L). The LC50 value of Cu (60-80 nm) NPs on the A. salina individuals at the beginning (0), 24th, 48th and 72nd hours and elimination period was 52.37 mg/L while the LC50 value of CuO (40 nm) NPs was 55.39 mg/L. The results of UV-Vis absorbance values showed that all statistical data revealed that maximum effect was observed between 24-30 hours and 25 ppm absorbance concentration was more effective. The multiple R, correlation coefficient (R2) and adjusted R2 values of Cu NP for the suitable Quadratic model were, respectively; 92.96 %, 86.42 % and 76.71 % while they are 98.31 %, 96.64 % and 94.25 % for CuO NP. Also, the data, was indicated effect size significantly changed based on the type and size of NP. Considering the microscope results, it was clearly noticed that A. salina organisms took the NPs in to their body. The accumulation in the gut of A. salina was observed and the images were taken with phase contrast microscope for both of NPs. The highest decrease for survival rates of A. salina individuals exposed to Cu NP was observed in the 10 ppm concentration (43.47 %) and in the 5 ppm concentration (46.20 %) for CuO NP. The results revealed that Cu and CuO NPS showed different toxic effects and that Cu NPs were more toxic than CuO.

A fractal analysis of bone phantoms from digital images (디지탈영상에서 골판톰의 프랙탈분석)

  • Kim Jae-Duk;Kim Jin-Soo;Lee Chang-Yul
    • Imaging Science in Dentistry
    • /
    • v.35 no.1
    • /
    • pp.33-40
    • /
    • 2005
  • Purpose : (1) To analyse the effect of exposure time, ROI size and one impact factor in the image processing procedure on estimates of fractal dimension; and (2) to analyse the correlated relationship between the fractal dimension and the Cu-Eq value (bone density). Materials and Methods : The cylindric bone phantoms of 6 large and 5 small diameter having different bone densities respectively and human dry mandible segment with copper step wedge were radiographed at 1.0 and 1.2 sec esposure (70 kVp, 7 mA) using one occlusal film and digitized. Eleven rectangular ROIs from 11 cylindric bone phantoms and 4 rectan-gular ROIs from cortical, middle, periodontal regions, and socket of bone were selected. Gaussian blurred Image was subtracted from original image of each ROI and multiplied respectively by 1, 0.8, and 0.5, and then the image was made binary, eroded and dilated once, and skeletonized. The fractal dimension was calculated by means of a box counting method in the software ImageJ. Results : The fractal dimension was decreased gradually with continued bone density decrease showing strong correlations (bone phantom; r> 0.87, bone; r> 0.68) under 70 kVp 1.0 sec M = 0.8. Fractal dimensions showed the significant differerence (p < 0.05) between two different exposure times on the same small ROI of bone phantom. Fractal dimensions between two different sizes of ROI on bone phantom showed the significant differerence (p < 0.05) under 1.2 sec exposure, but did not show it (p > 0.05) under 1.0 sec exposure. Conclusions : Exposure time, ROI size, and modifying factor during subtracting could become impacting on the results of fractal dimension. Fractal analysis with thoroughly evaluated method considering the various impacting factors on the results could be useful in assessing the bone density in dental radiography.

  • PDF