• 제목/요약/키워드: Copper electrode

검색결과 377건 처리시간 0.031초

탄소나노튜브/V2O5 나노선 헤테로 구동소자 특성연구 (MWCNTs/V2O5 Nanowire Hetero-junction Actuator Devices)

  • 이강호;이성민;박소정;허정환;김규태;박성준;하정속
    • 한국전기전자재료학회논문지
    • /
    • 제19권3호
    • /
    • pp.250-254
    • /
    • 2006
  • Hetero-junction sheet actuator composed of carbon nanotubes and $V_{2}O_5$ nanowires were demonstrated in a bimetal configuration. The successive filtration of $V_{2}O_5$ nanowire solution followed by carbon nanotube dispersed water solution in the same way produced a dark-gray colored sheet. A significant actuation was observed in sodium chloride electrolyte solution with a bending direction to the carbon nanotube side at the positive bias voltage against the copper counter-electrode. As the frequency of the applied voltage increased, the amplitudes decreased, indicating a rather slow response of the hetero-film actuator in the electrolyte solution. The hybrid structure enabled an easy fabrication of the film actuator with the enhanced efficiencies.

Effects of Residual PMMA on Graphene Field-Effect Transistor

  • Jung, J.H.;Kim, D.J.;Sohn, I.Y.;Lee, N.E.
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
    • /
    • pp.561-561
    • /
    • 2012
  • Graphene, two dimensional single layer of carbon atoms, has tremendous attention due to its superior property such as fast electron mobility, high thermal conductivity and optical transparency, and also found many applications such as field-effect transistors (FET), energy storage and conversion, optoelectronic device, electromechanical resonators and chemical sensors. Several techniques have been developed to form the graphene. Especially chemical vapor deposition (CVD) is a promising process for the large area graphene. For the electrically isolated devices, the graphene should be transfer to insulated substrate from Cu or Ni. However, transferred graphene has serious drawback due to remaining polymeric residue during transfer process which induces the poor device characteristics by impurity scattering and it interrupts the surface functionalization for the sensor application. In this study, we demonstrate the characteristics of solution-gated FET depending on the removal of polymeric residues. The solution-gated FET is operated by the modulation of the channel conductance by applying a gate potential from a reference electrode via the electrolyte, and it can be used as a chemical sensor. The removal process was achieved by several solvents during the transfer of CVD graphene from a copper foil to a substrate and additional annealing process with H2/Ar environments was carried out. We compare the properties of graphene by Raman spectroscopy, atomic force microscopy(AFM), and X-ray Photoelectron Spectroscopy (XPS) measurements. Effects of residual polymeric materials on the device performance of graphene FET will be discussed in detail.

  • PDF

Breakdown Characteristics and Survival Probability of Turn-to- Turn Models for a HTS Transformer

  • Cheon H.G.;Baek S.M.;Seong K.C.;Kim H.J.;Kim S.H.
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제7권2호
    • /
    • pp.21-26
    • /
    • 2005
  • Breakdown characteristics and survival probability of turn-to-turn models were investigated under ac and impulse voltage at 77K. For experiments, two test electrode models were fabricated: One is point contact model and the other is surface contact model. Both are made of copper wrapped by O.025mm thick polyimide film(Kapton). The experimental results were analyzed statistically using Weibull distribution in order to examine the wrapping number effects on voltage-time characteristics under ac voltage as well as under impulse voltage in LN$_{2}$. Also survival analysis were performed according to the Kaplan-Meier method. The breakdown voltages of surface contact model are lower than that of point contact model, because the contact area of surface contact model is wider than that of point contact model. Besides, the shape parameter of point contact model is a little bit larger than that of surface contact model. The time to breakdown t$_{50}$ is decreased as the applied voltage is increased, and the lifetime indices slightly are increased as the number of layers is increased. According to the increasing applied voltage and decreasing wrapping number, the survival probability is increased.

고온초전도 SMES의 절연특성 (Electrical Insulation Characteristics of HTS SMES)

  • 천현권;최재형;곽동순;김해종;성기철;윤문수;김상현
    • 한국전기전자재료학회논문지
    • /
    • 제19권6호
    • /
    • pp.574-578
    • /
    • 2006
  • Toward the practical applications, on operation of conduction-cooled HTS SMES at temperatures well below 77 K should be investigated, in order to take advantage of a greater critical current density of HTS and considerably reduce the size and weight of the system. Recently, research and development concerning application of the conduction-cooled HTS SMES that is easily movement are actively progressing in Korea. Electrical insulation under cryogenic temperature is a key and an important element in the application of this apparatus. Using multi wrapped copper by Polyimide film for HTS SMES, the breakdown characteristics of models for turn-to-turn, that is surface contact model, were investigated under ac and impulse voltage at 77 K. A material that is Polyimide film (Kapton) 0.025 mm thickness is used for multi wrapping of the electrode. Statistical analysis of the results using Weibull distribution to examine the wrapping number effects on breakdown voltage under at and impulse voltage in $LN_2$ was carried.

Nafion-EDTA가 수식된 유리탄소전극을 이용한 수은(II)의 측정 (Determination of Mercury(II) Using Nafion-EDTA-Modified Glassy Carbon Electrodes)

  • 정근호;박찬주;박율희;이지영
    • 한국환경보건학회지
    • /
    • 제26권4호
    • /
    • pp.110-114
    • /
    • 2000
  • Determination of mercury(II) using Nafion-EDTA-modified glassy carbon electrodes is proposed. it is based on the chemical reactivity of an immobilized modifier, Nafion-EDTA. Differential pulse voltammetry is employed, and the oxidation of complexes, at +0.43V vs. Ag/AgCl, is observed. For a 5-min preconcentration period, a linear calibration curve is obtained for mercury(II) concentrations ranging from 1.0$\times$ 10$^{-8}$ to 1.0$\times$10$^{-6}$ M. Further, when an approximate amount of copper(II) is added to the test solution, We demonstrate that at a preconcentration time of 5 min the Nafion-EDTA-modified glassy carbon electrode has a dynamic range of 2 orders of magnitude(from 10$^{-10}$ to 10$^{-8}$ M) and the detection limit is as low as 0.5$\times$ 10$^{-10}$ M(0.01 ppb). This method is applied to the determination of mercury(II) in sea water(4.0$\times$10$^{-10}$ M, 0.08ppb). The result agrees satisfactorily with the value(below 0.1 ppb) measured by using ICP/MS.

  • PDF

A novel free-standing anode of CuO nanorods in carbon nanotube webs for flexible lithium ion batteries

  • Lee, Sehyun;Song, Hyeonjun;Hwang, Jun Yeon;Kim, Seung Min;Jeong, Youngjin
    • Carbon letters
    • /
    • 제27권
    • /
    • pp.98-107
    • /
    • 2018
  • Free-standing electrodes of CuO nanorods in carbon nanotubes (CNTs) are developed by synthesizing porous CuO nanorods throughout CNT webs. The electrochemical performance of the free-standing electrodes is evaluated for their use in flexible lithium ion batteries (LIBs). The electrodes comprising CuO@CNT nanocomposites (NCs) were characterized by charge-discharge testing, cyclic voltammetry, and impedance measurement. These structures are capable of accommodating a high number of lithium ions as well as increasing stability; thus, an increase of capacity in long-term cycling and a good rate capability is achieved. We demonstrate a simple process of fabricating free-standing electrodes of CuO@CNT NCs that can be utilized in flexible LIBs with high performance in terms of capacity and cycling stability.

전도성 흑연을 포함하는 발열 필름의 열적 특성 (Thermal Characteristics of Heating Films Including Conductive Graphite)

  • 최규연;오원태
    • 한국전기전자재료학회논문지
    • /
    • 제33권6호
    • /
    • pp.500-504
    • /
    • 2020
  • Heating films were prepared with composites of poly (methyl methacrylate) and conductive graphite. The as-prepared composite was deposited on a PET film and then fabricated using a bar coater to produce a film with uniform thickness. Copper electrodes were attached to both ends of the as-prepared film, and the heating characteristics of the film were analyzed while applying a DC voltage. The electrical conductivity and heating temperature of the heating films depended on the size, structure, content, and the dispersion characteristics of the graphite in the composite. The thermal energy was adjusted by controlling the electrical energy, based on the Joule heating theory. The electrical resistance of the film was altered in proportion to Ohm's law, and the heating temperature was changed according to the structure of the film (interelectrode spacing or electrode length) and the conductive graphite content. When the content of conductive graphite in the film increases, the electrical resistance decreases, and the heating temperature increases; however, there is no significant change above a certain content (50%).

Hybrid between Inorganic Material and Biological Photosystem1 for Light Energy Application

  • 김영혜;남기태
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제45회 하계 정기학술대회 초록집
    • /
    • pp.272-272
    • /
    • 2013
  • The attractive features of photosynthetic reaction center proteins for energy application make them useful in solar energy conversion to hydrogen fuel or electrical energy. Almost unity charge separation quantum yield and its rapid speed of ~1ns, absorbance region in visible light (480~740 nm) and high proportion of photosynthetically active solar energy of 48.5% allowed photosystem1 to exploited as a bio-material for photo-energy devices. Directionality of photosystem1 in electron transfer can solve main problem in two-step water splitting process where back reaction deteriorates the overall efficiency. In the study, photosystem1 was extracted from spinach and the photo-induced excited electron in the reaction center was utilized in various field of light energy application. First, hydrogen evolving system realized by photodeposition of platinum at the end of the electron transfer chain, with combining specific semiconductor to oxidize water in the first step of Z-scheme. The evaluation by gas-chromatography demonstrated hydrogen evolution through the system. For the further application of photoelectrical material on electrode, photosystem1 have been controlled by copper ion, which is expected to assemble photosystem in specific orientation followed by maximized photoelectrical ability of film. The research proposed concrete methods for combining natural protein and artificial materials in one system and suggested possibility of designing interface between biological and inorganic materials.

  • PDF

아민기를 가진 유기물을 사용한 금속의 부식억제효과 (A Study on the Inhibition Effect of Metal Corrosion Using Organic Compound Containing an Amine Group)

  • 박근호
    • 한국응용과학기술학회지
    • /
    • 제27권3호
    • /
    • pp.361-369
    • /
    • 2010
  • A study on the corrosion inhibition of metals is important in many industrial applications (carbon steel, copper, aluminum, SUS 304, nickel). In this study, we investigated the C-V diagrams related to the surface corrosion of metals. It was observed through the SEM that the surface corrosion state of the various metals had the corrosion potential by the scan rate and the organic inhibitor containing an amine group. We determined to measure cyclic voltammetry using the three-electrode system. The measurement of oxidation and reduction ranged from -1350mV to 1650mV. The scan rate was 50, 100, 150, and 200mV/s. It turned out that the C-V characterization of SUS 304 was irreversible process caused by the oxidation current from the cyclic voltammogram. After adding organic inhibitors, the adsorption film was constituted, and the passive phenomena happened. As a result, it was revealed that the inhibition effect of metal corrosion depends on the molecular interaction, and the interaction has influence on the adsorption complex.

금속증기레이저 연구 II (Metal Vapor Laser Research II.)

  • 이재경;정환재;임기건;이형종;정창섭;김진승
    • 한국광학회지
    • /
    • 제3권3호
    • /
    • pp.178-182
    • /
    • 1992
  • 내경 1.6cm, 길이 50cm의 알루미나 세라믹 방전관을 사용하여 방전전극간의 거리가 45cm인 공쟁식 방전가열형 구리증기레이저를 제작하였다. 방전가열 및 여기를 위한 6kV, 500mA 정격의 직류 고전압 전원장치, 1.8H의 중전 인덕터와 5nF의 에너지저장 캐패시터를 포함하는 resonant charging 방식의 고전압 충전회로와 1-7kHz 범위의 펄스반복률로 동작하는 thyratron 구동회로가 각각 설계 제작되었다. 개발된 레이저장치는 방전관의 온도 $1350^{\circ}C$ 부근에서 발진을 시작하였고, 충전전압 12kV, 펄스반복률 4.5kHz, 네온완충기체압력 50mbar, 동작온도 $1460^{\circ}C$일 때 0.7W의 최대평균 출력을 얻었다.

  • PDF