• Title/Summary/Keyword: Copper displacement

Search Result 34, Processing Time 0.023 seconds

Simulation of Ball Indentation Process by Elasto-Plastic Contact Analysis (탄소성 접촉 해석법을 이용한 볼 압입시험의 시뮬레이션)

  • 이병채;곽병만
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.2
    • /
    • pp.185-192
    • /
    • 1988
  • Computation of the elasto-plastic solution of ball indentation was carried out by the quadratic programming method. The problem was formulated as an elasto-plastic contact problem under the assumption of small displacement and small deformation and then transformed into a minimization problem. Finite element approximation resulted in a quadratic programming problem. Numerical and experimental study were done with aluminium Al 2024-T351 and commercially pure copper. The computed load-displacement curves were in good agrement with those obtained from experiments. Tabor's relationship for representative strains was also examined. Stress distributions were found to resemble closely those results available in the literature.

Electromagnetic Micro x-y Stage for Probe-Based Data Storage

  • Park, Jae-joon;Park, Hongsik;Kim, Kyu-Yong;Jeon, Jong-Up
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.1 no.1
    • /
    • pp.84-93
    • /
    • 2001
  • An electromagnetic micro x-y stage for probe-based data storage (PDS) has been fabricated. The x-y stage consists of a silicon body inside which planar copper coils are embedded, a glass substrate bonded to the silicon body, and eight permanent magnets. The dimensions of flexures and copper coils were determined to yield $100{\;}\mu\textrm{m}$ in x and y directions under 50 mA of supplied current and to have 440 Hz of natural frequency. For the application to PDS devices, electromagnetic stage should have flat top surface for the prevention of its interference with multi-probe array, and have coils with low resistance for low power consumption. In order to satisfy these design criteria, conducting planar copper coils have been electroplated within silicon trenches which have high aspect ratio ($5{\;}\mu\textrm{m}$in width and $30{\;}\mu\textrm{m}$in depth). Silicon flexures with a height of $250{\;}\mu\textrm{m}$ were fabricated by using inductively coupled plasma reactive ion etching (ICP-RIE). The characteristics of a fabricated electromagnetic stage were measured by using laser doppler vibrometer (LDV) and dynamic signal analyzer (DSA). The DC gain was $0.16{\;}\mu\textrm{m}/mA$ and the maximum displacement was $42{\;}\mu\textrm{m}$ at a current of 180 mA. The measured natural frequency of the lowest mode was 325 Hz. Compared with the designed values, the lower natural frequency and DC gain of the fabricated device are due to the reverse-tapered ICP-RIE process and the incomplete assembly of the upper-sided permanent magnets for LDV measurements.

  • PDF

Thermal displacement minimization of an oxide target for bonding process by finite element analysis and optimal design (유한요소해석과 최적설계 기법을 활용한 증착용 산화물타겟 접합공정에서의 열 변형 최소화 연구)

  • Cha, Hanyoung;Chung, Chan-Yeup
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.30 no.5
    • /
    • pp.208-213
    • /
    • 2020
  • In this research, design optimization was investigated using the finite element analysis and the optimal design technique based on the PQRSM algorithm to minimize the thermal deformation of IGZO oxide in a target module in which IGZO oxide and a copper backplate are bonded to each other. In order to apply the optimal design technique in conjunction with finite element analysis, the x-coordinate of lower supports and upper fixed boards used as design valuables, and the optimal design was performed to minimize the thermal displacement of IGZO materials as the objective function. After the optimization process, the thermal displacement within IGZO oxide could be reduced to 42 % comparing with the initial model. The result is thought to be useful in the industry as it can reduce the thermal deformation of target oxides materials only by changing the position of the subsidiary materials during the bonding process.

Glucose Oxidation on Gold-modified Copper Electrode

  • Lim, Ji-Eun;Ahn, Sang Hyun;Pyo, Sung Gyu;Son, Hyungbin;Jang, Jong Hyun;Kim, Soo-Kil
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.9
    • /
    • pp.2685-2690
    • /
    • 2013
  • The activities of Au-modified Cu electrodes toward glucose oxidation are evaluated according to their fabrication conditions and physico-chemical properties. The Au-modified Cu electrodes are fabricated by the galvanic displacement of Au on a Cu substrate and the characteristics of the Au particles are controlled by adjusting the displacement time. From the glucose oxidation tests, it is found that the Au modified Cu has superior activity to the pure Au or Cu film, which is evidenced by the negative shift in the oxidation potential and enhanced current density during the electrochemical oxidation. Though the activity of the Au nanoparticles is a contributing factor, the enhanced activity of the Au-modified Cu electrode is due to the increased oxidation number of Cu through the electron transfer from Cu to more electronegative Au. The depletion of electron in Cu facilitates the oxidation of glucose. The stability of the Au-modified Cu electrode was also studied by chronoamperometry.

Fabrication of Electro-active Polymer Actuator Based on Transparent Graphene Electrode

  • Park, Yunjae;Choi, Hyonkwang;Im, Kihong;Kim, Seonpil;Jeon, Minhyon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.386.1-386.1
    • /
    • 2014
  • The ionic polymer-metal composite (IPMC), a type of electro-active polymer material, has received enormous interest in various fields such as robotics, medical sensors, artificial muscles because it has many advantages of flexibility, light weight, high displacement, and low voltage activation, compare to traditional mechanical actuators. Mostly noble metal materials such as gold or platinum were used to form the electrode of an IPMC by using electroless plating process. Furthermore, carbon-based materials, which are carbon nanotube (CNT) and reduced graphene-CNT composite, were used to alter the electrode of IPMC. To form the electrode of IPMC, we employ the synthesized graphene on copper foil by chemical vapor deposition method and use the transfer process by using a support of PET/silicone film. The properties of graphene were evaluated by Raman spectroscopy, UV/Vis spectroscopy, and 4-point probe. The structure and surface of IPMC were analyzed via field emission scanning electron microscope. The fabricated IPMC performance such as displacement and operating frequency was measured in underwater.

  • PDF

New Monte-Carlo based simulation program suitable for low-energy ions irradiation in pure materials

  • Ghadeer H. Al-Malkawi;Al-Montaser Bellah A. Al-Ajlony;Khaled F. Al-Shboul;Ahmed Hassanein
    • Nuclear Engineering and Technology
    • /
    • v.55 no.4
    • /
    • pp.1287-1299
    • /
    • 2023
  • A new Monte-Carlo-based computer program (RDS-BASIC) is developed to simulate the transport of energetic ions in pure matter. This computer program is utilizing an algorithm that uses detailed numerical solutions for the classical scattering integral for evaluating the outcomes of the binary collision processes. This approach is adopted by several prominent similar simulation programs and is known to provide results with higher accuracy compared to other approaches that use approximations to shorten the simulation time. Furthermore, RDS-BASIC simulation program contains special methods to reduce the displacement energy threshold of surface atoms. This implementation is found essential for accurate simulation results for sputtering yield in the case of very low energy ions irradiation (near sputtering energy threshold) and also successfully solve the problem of simultaneously obtaining an acceptable number of atomic displacements per incident ions. Results of our simulation for several irradiation systems are presented and compared with their respective TRIM (SRIM-2013) and the state-of-the-art SDTrimSP simulation results. Our sputtering simulation results were also compared with available experimental data. The simulation execution time for these different simulation programs has also been compared.

Surface Potential Properties of CuPc/Au Interface with Varying Temperature (CuPc/Au 계면에서의 온도 변화에 따른 표면전위 특성)

  • Lee, Ho-Shik;Park, Yong-Pil
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.10
    • /
    • pp.934-937
    • /
    • 2008
  • Organic field-effect transistors (OFETs) are of interest for use in widely area electronic applications. We fabricated a copper phthalocyanine (CuPc) based field-effect transistor with different metal electrode. So we need the effect of the substituent group attached to the phthalocyanine on the surface potential was investigated by Kelvin probe method with varying temperature of the substrate. We were obtained the positive shift of the surface potential for CuPc thin film. We observed the electron displacement at the interface between Au electrode and CuPc layer and we were confirmed by the surface potential measurement.

Fabrication of an Electromagnetic Actuator with the Corrugated Parylene Diaphragm (주름진 박막을 갖는 평면 코일을 이용한 전자 구동기 제작)

  • Jeong, Hyun-Ku;Jeong, Ok-Chan;Yang, Sang-Sik
    • Proceedings of the KIEE Conference
    • /
    • 1999.11d
    • /
    • pp.1154-1156
    • /
    • 1999
  • This paper presents the novel fabrication of an electromagnetic micro actuator with a corrugated diaphragm and a flat one. The actuator consists of a Parylene diaphragm with a spiral copper coil and a permanent magnet. The cower coil is fabricated by electroplating and patterning. As the further works, the frequency response of the actuator are obtained by using a laser vibrometer and the static deflection of the actuator diaphragm are measure by using laser displacement meter. The corrugated diaphragm is expected to be better than the flat one with respect to the actuator performance.

  • PDF

Surface Potential Properties of CuPc/Au Interface with Varying Temperature (CuPc/Au 구조에서의 온도 변화에 따른 계면에서의 표면전위 특성)

  • Lee, Ho-Shik;Park, Yong-Pil;Kim, Young-Pyo;Yu, Seong-Mi;Cheon, Min-Woo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.492-493
    • /
    • 2007
  • Organic field-effect transistors (OFETs) are of interest for use in widely area electronic applications. We fabricated a copper phthalocyanine(CuPc) based field-effect transistor with different metal electrode. So we need the effect of the substituent group attached to the phthalocyanine on the surface potential was investigated by Kelvin probe method with varying temperature of the substrate. We were obtained the positive shift of the surface potential for CuPc thin film. We observed the electron displacement at the interface between Au electrode and CuPc layer and we were confirmed by the surface potential measurement.

  • PDF

Electromagnetic Actuators for Drug Delivery Mini-Pump (약물 공급 미니펌프용 전자기 액츄에이터)

  • Cho, Doo-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.533-534
    • /
    • 2006
  • In this paper we propose a new model of a mini-pump with peristaltic motion and present the results of the finite element analysis of an electromagnetic micro actuator. The mini-pump consists of three diaphrams made of PDMS, three permanent magnets in cylinders, printed copper coils on glass substrates, and input and output port. The size of the mini-pump is $14\;{\times}\;40\;{\times}\;5.4$ mm3 and the permanent magnet diameter 6.2 mm $\times$ thickness 2 mm. The electromagnetic force applied on the magnet was about 0.84 N when the current of coils was 1 A, then the maximum displacement of the PDMS diaphram was about 2mm.

  • PDF