• Title/Summary/Keyword: Copper catalyst

Search Result 140, Processing Time 0.029 seconds

Vertically Standing Graphene on Glass Substrate by PECVD

  • Ma, Yifei;Hwang, Wontae;Jang, Haegyu;Chae, Heeyeop
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.232.2-232.2
    • /
    • 2014
  • Since its discovery in 2004, graphene, a sp2-hybridized 2-Dimension carbon material, has drawn enormous attention. A variety of approaches have been attempted, such as epitaxial growth from silicon carbide, chemical reduction of graphene oxide and CVD. Among these approaches, the CVD process takes great attention due to its guarantee of high quality and large scale with high yield on various transition metals. After synthesis of graphene on metal substrate, the subsequent transfer process is needed to transfer graphene onto various target substrates, such as bubbling transfer, renewable epoxy transfer and wet etching transfer. However, those transfer processes are hard to control and inevitably induce defects to graphene film. Especially for wet etching transfer, the metal substrate is totally etched away, which is horrendous resources wasting, time consuming, and unsuitable for industry production. Thus, our group develops one-step process to directly grow graphene on glass substrate in plasma enhanced chemical vapor deposition (PECVD). Copper foil is used as catalyst to enhance the growth of graphene, as well as a temperature shield to provide relatively low temperature to glass substrate. The effect of growth time is reported that longer growth time will provide lower sheet resistance and higher VSG flakes. The VSG with conductivity of $800{\Omega}/sq$ and thickness of 270 nm grown on glass substrate can be obtained under 12 min growing time. The morphology is clearly showed by SEM image and Raman spectra that VSG film is composed of base layer of amorphous carbon and vertically arranged graphene flakes.

  • PDF

A Study on Reusing of Electroless Ni-Cu-B Waste Solution (무전해 Ni-Cu-B 폐 도금액의 재사용에 관한 연구)

  • Oh Iee-Sik;Bai Young-Han
    • Resources Recycling
    • /
    • v.12 no.1
    • /
    • pp.18-24
    • /
    • 2003
  • Reusing of electroless Ni-Cu-B waste solution was investigated in the plating time, plating rate, solution composition and deposit. Plating time of nickel-catalytic surface took longer than that of zincated-catalytic surface. Initial solution with 40% waste solution additive at batch type was possible to reusing of waste solution. Plating time of initial solution at continuous type took longer 6 times over than that of batch type. Plating time of 40% waste solution additive at continuous type took longer 2 times over than that of batch type. Component change of nickel-copper for electroless deposition was greatly affected by deposited inferiority and larger decreased plating rate.

Synthesis of Tris(silyl)methanes by Modified Direct Process

  • Lee, Chang Yeop;Han, Jun Su;Yu, Bok Ryeol;Jeong, Il Nam
    • Bulletin of the Korean Chemical Society
    • /
    • v.21 no.10
    • /
    • pp.959-968
    • /
    • 2000
  • Direct reaction of elemental silicon with a mixture of (dichloromethyl)silanes 1 $[Cl_3-nMenSiCHCl_2:$ n = 0 (a), n = 1(b), n = 2(c), n = 3(d)] and hydrogen chloride has been studied in the presence of copper catalyst using a stirred bed reactor equ ipped with a spiral band agitator at various temperatures from $240^{\circ}C$ to $340^{\circ}C.$ Tris(si-lyl) methanes with Si-H bonds, 3a-d $[Cl_3-nMenSiCH(SiHCl_2)_2]$, and 4a-d $[Cl_3-nMenSiCH(SiHCl_2)(SiCl_3)]$, were obtained as the major products and tris(silyl)methanes having no Si-H bond, 5a-d $[Cl_3-nMenSiCH(SiCl_3)_2]$, as the minor product along with byproducts of bis(chlorosilyl)methanes, derived from the reaction of silicon with chloromethylsilane formed by the decomposition of 1. In addition to those products, trichlorosilane and tetra-chlorosilane were produced by the reaction of elemental silicon with hydrogen chloride. The decomposition of 1 was suppressed and the production of polymeric carbosilanes reduced by adding hydrogen chloride to 1. Cad-mium was a good promoter for and the optimum temperature for this direct synthesis was $280^{\circ}C$.

Effect of KHCO3 Concentration Using CuO Nanowire for Electrochemical CO2 Reduction Reaction

  • Kanase, Rohini Subhash;Kang, Soon Hyung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.27 no.4
    • /
    • pp.11-17
    • /
    • 2020
  • Copper has been proved to be the best catalyst for electrochemical CO2 reduction reaction, however, for optimal efficiency and selectivity, its performance requires improvements. Electrochemical CO2 reduction reaction (RR) using CuO nanowire electrode was performed with different concentrations of KHCO3 electrolyte (0.1 M, 0.5 M, and 1 M). Cu(OH)2 was formed on Cu foil, followed by thermal-treatment at 200℃ under the air atmosphere for 2 hrs to transform it to the crystalline phase of CuO. We evaluated the effects of different KHCO3 electrolyte concentrations on electrochemical CO2 reduction reaction (RR) using the CuO nanowire electrode. At a constant current (5mA), low concentrated bicarbonate exhibited a more negative potential -0.77 V vs. Reversible Hydrogen Electrode (RHE) (briefly abbreviated as VRHE), while the negative potential reduced to -0.33 VRHE in the high concentration of bicarbonate solution. Production of H2 and CH4 increased with an increased concentration of electrolyte (KHCO3). CH4 production efficiency was high at low negative potential whereas HCOOH was not influenced by bicarbonate concentration. Our study provides insights into efficient, economically viable, and sustainable methods of mitigating the harmful environmental effects of CO2 emission.

Selective Dehydration of Sorbitol to Isosorbide over Sulfonated Activated Carbon Catalyst (설폰화 활성탄 촉매를 이용한 솔비톨의 아이소소바이드로의 탈수반응)

  • Kang, Hyo Yoon;Hwang, Dong Won;Hwang, Young Kyu;Hwang, Jin-Soo;Chang, Jong-San
    • Korean Chemical Engineering Research
    • /
    • v.51 no.2
    • /
    • pp.189-194
    • /
    • 2013
  • A sulfonated activated carbon (AC-$SO_3H$) was used as a solid acid catalyst for dehydration of sorbitol to isosorbide and its catalytic performance was compared with the commercial solid acid such as acidic ion exchange resin, Amberlyst-36, and sulfated copper oxide. The catalytic performance with 100% sorbitol conversion and 52% isosorbide selectivity was obtained over AC-$SO_3H$ at 423.15 K. Although AC-$SO_3H$ possessed only 0.5 mmol/g of sulfur content, it showed the similar dehydration activity of sorbitol to isosorbide with Amberlyst-36 (5.4 mmol/g) at 423.15 K. Based on the high thermal and chemical stability of AC-$SO_3H$, one-step reactive distillation, where isosorbide separation can be carried out simultaneously with sorbitol dehydration, was tried to increase the recovery yield of isosobide from sorbitol. The reactive distillation process using AC-$SO_3H$, the turnover number of AC-$SO_3H$ was 4 times higher than the conventional two-step process using sulfuric acid.

The Availability of Automobile Catalytic Convert of Copper Based on the DFT Calculations of Cu-NO Complexes (Cu-NO 복합체에 대한 DFT 계산에 따른 Cu의 자동차 촉매변환기 적합성)

  • Ha, Kwanga;Lee, Min-Joo
    • Journal of the Korean Chemical Society
    • /
    • v.62 no.5
    • /
    • pp.358-363
    • /
    • 2018
  • The purpose of this study is to show the possibility of using Cu catalyst in removal of $NO_x$ from automobile exhaust which is regarded as the primary source of fine dust PM2.5. The energy and the bond lengths of the three possible structures of Cu-NO complex, which is formed by binding NO molecule to Cu, and the changes in IR and Raman spectra are calculated using MPW1PW91 method on the level of 6-311(+)G(d,p) of basis sets with Gaussian 09 program. As a result, the enthalpy of formation of the Cu-NO complexes are obtained as ${\Delta}H=104.89$, 91.98, -127.48 kJ/mol for the linear, bent, and bridging forms of them, respectively. And the bond lengths between N and O in NO complexes, which becomes longer than NO molecule, indicates that O is easily reduced from Cu-NO. In addition, the Cu-NO complexes using Cu catalyst can be easily measured by infrared or Raman spectroscopy because in the IR and Raman spectra of the NO and Cu-NO complexes the positon and the intensity of bands are definitely different in each vibration mode.

In Situ-DRIFTS Study of Rh Promoted CuCo/Al2O3 for Ethanol Synthesis via CO Hydrogenation

  • Li, Fang;Ma, Hongfang;Zhang, Haitao;Ying, Weiyong;Fang, Dingye
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.9
    • /
    • pp.2726-2732
    • /
    • 2014
  • The promoting effect of rhodium on the structure and activity of the supported Cu-Co based catalysts for CO hydrogenation was investigated in detail. The samples were characterized by DRIFTS, $N_2$-adsorption, XRD, $H_2$-TPR, $H_2$-TPD and XPS. The results indicated that the introduction of rhodium to Cu-Co catalysts resulted in modification of metal dispersion, reducibility and crystal structure. DRIFTS results of CO hydrogenation at reaction condition (P=2 MPa, $T=260^{\circ}C$) indicated the addition of 1 wt % rhodium improved hydrogenation ability of Cu-Co catalysts. The ethanol selectivity and CO conversion were both improved by 1 wt % Rh promoted Cu-Co based catalysts. The alcohol distribution over un-promoted and rhodium promoted Cu-Co based catalysts obeys A-S-F rule and higher chain growth probability was got on rhodium promoted catalyst.

Fabrication and Thermophysical Properties of Al2O3-Based Multicomponent Composites by Sol-Gel Process (알루미나가 포함된 복합산화물의 제조와 열물성 특성평가)

  • Lim, Saet-Byeol;You, Hee-Jung;Hong, Tae-Whan;Jung, Mie-Won
    • Korean Journal of Materials Research
    • /
    • v.20 no.9
    • /
    • pp.472-477
    • /
    • 2010
  • $Al_2O_3$ has received wide attention with established use as a catalyst and growing application in structural or functional ceramic materials. On the other hand, the boehmite (AlO(OH)) obtained by sol-gel process has exhibited a decrease in surface area during phase transformation due to a decline in surface active site at high temperature. In this work, $Al_2O_3$-CuO/ZnO (ACZ) and $Al_2O_3$-CuO/CeO (ACC) composite materials were synthesized with aluminum isopropoxide, copper (II) nitrate hemi (pentahydrate), and cerium (III) nitrate hexahydrate or zinc (II) nitrate hexahydrate. Moreover, the Span 80 as the template block copolymer was added to the ACZ/ACC composition to make nano size particles and to keep increasing the surface area. The ACZ/ACC synthesized powders were characterized by Thermogravimetry-Differential Thermal analysis (TG/DTA), X-ray Diffractometer (XRD), Field-Emmision Scanning Electron Microscope (FE-SEM), Bruner-Emmett-Teller (BET) surface analysis and thermal electrical conductivity (ZEM-2:M8/L). An enhancement of surface area with the addition to Span 80 surfactant was observed in the ACZ powders from 105 $m^2$/g to 142 $m^2$/g, and the ACC powders from 103 $m^2$/g to 140 $m^2$/g, respectively.

Photocatalytic hydrogen production by water splitting using novel catalysts under UV-vis light irradiation

  • Marquez, Francisco;Masa, Antonio;Cotto, Maria;Garcia, Abraham;Duconge, Jose;Campo, Teresa;Elizalde, Eduardo;Morant, Carmen
    • Advances in Energy Research
    • /
    • v.2 no.1
    • /
    • pp.33-45
    • /
    • 2014
  • Photocatalytic hydrogen generation by water splitting ($H_2O_{(1)}{\rightarrow}H_2_{(g)}+1/2O_2_{(g)}$) has been studied on photocatalysts based on Zn, Cd, Fe and Cu, synthesized by coprecipitation. Iron and copper nanoparticles were incorporated as cocatalysts to enhance the photocatalytic activity of the ZnCd solid solution. The effect of the different synthesis parameters (temperature, elemental atomic ratios, amount of Cu and Fe incorporated in the catalyst and calcination temperature) on the photocatalytic production of hydrogen has been studied in order to determine the best experimental synthesis conditions. The catalysts have been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and BET. The experiments of photocatalytic water splitting were performed in aqueous solution of the photocatalysts previously dispersed in a soft ultrasound bath. The photocatalysts were irradiated under different lights ranging from 220 to 700 nm. The photocatalytic activity was found to be clearly dependent on the specific area of the photocatalyst.

A Metal Enhanced Flow-Injection Chemiluminescence Method for the Rapid Determination of Norfloxacin in Pharmaceutical Formulations and Serum Sample

  • Kamruzzaman, Mohammad;Ferdous, Taslima;Alam, Al-Mahmnur;Lee, Sang-Hak;Kim, So-Yeun;Kim, Young-Ho;Kim, Sung-Hong
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.2
    • /
    • pp.639-644
    • /
    • 2011
  • A simple and highly sensitive chemiluminescence method to determine norfloxacin (NFLX) has been proposed by measuring the chemiluminescence (CL) intensities using a flow injection (FI) system. The CL intensity of the luminol-$H_2O_2$ system is strongly enhanced by the addition of Cu (II) in alkaline condition. The CL intensity is substantially increased after the injection of NFLX into the luminol-$H_2O_2$-Cu (II) system. The enhancement effect is attributed to a catalytic effect of Cu (II) due to the interaction with NFLX which forms a complex with the catalyst. Under the optimal conditions, the sensitizing effect of the CL intensity is proportional to the concentration of NFLX in the range of $1.5{\times}10^{-9}-5.9{\times}10^{-7}molL^{-1}$ (r = 0.9994) with a detection limit ($3{\sigma}$) of $2.98{\times}10^{-10}molL^{-1}$. The proposed method had good reproducibility with the relative standard deviation (RSD, n = 5) of 1.6% for $1{\times}10^{-7}molL^{-1}$ of NFLX. The possible reaction mechanism of the CL reaction is also discussed. This method has been successfully applied for the determination of trace amount of NFLX in pharmaceutical preparations and serum samples.