• 제목/요약/키워드: Copper Plating

검색결과 265건 처리시간 0.025초

Field Emission Characteristics of Carbon Nanotube-Copper Composite Structures

  • Sung, Woo-Yong;Kim, Wal-Jun;Lee, Seung-Min;Lee, Ho-Young;Kim, Yong-Hyup
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2005년도 International Meeting on Information Displayvol.II
    • /
    • pp.1459-1461
    • /
    • 2005
  • Carbon nanotube -copper composite structures were fabricated using composite plating method and their field emission characteristics were investigated. Multi-walled carbon nanotubes synthesized by chemical vapor deposition were used in the present study. It was revealed that turn-on field of the structures was about 3.0 $V/{\mu}m$ at the current density of 0.1 ${\mu}A/cm^2$. We observed relatively uniform emission characteristics as well as stable emission currents. CNT-Cu composite plating method is efficient and it has no intrinsic limit on the plating area. Moreover, it gives strong adhesion between emitters and an electrode. The refore, we expect that CNT-Cu composite plating method can be applied to fabricate electron field emitters for large area FEDs and large area vacuum lighting sources.

  • PDF

전기화학적 해석을 통한 PCB용 구리도금에 대한 전류밀도의 영향성 연구 (A Study on The Effect of Current Density on Copper Plating for PCB through Electrochemical Experiments and Calculations)

  • 김성진;신한균;박현;이효종
    • 마이크로전자및패키징학회지
    • /
    • 제29권1호
    • /
    • pp.49-54
    • /
    • 2022
  • 반도체 Si 웨이퍼 Cu 배선을 제작하는데 사용하는 submicron 크기의 다마신 패턴의 구리 도금공정을 동일한 조건의 유기첨가제 및 전류밀도 조건을 사용하여 PCB 금속배선에 사용되는 수십 micron 크기의 패턴 도금에 적용하였다. PCB 패턴의 종횡비가 작아 쉽게 채워질 것으로 기대했던 것과는 달리, 이 경우 패턴 내부에 위치별 도금 두께 불균일도가 심화되는 것이 관찰되었다. 이러한 원인을 정량적으로 분석하기 위해 유동 및 전기장을 고려한 전기화학적 해석을 진행하였으며, 이를 통해 패턴 바닥부 코너에서 측벽과 바닥부의 도금에 의한 용액내 Cu2+ 이온의 고갈이 상대적으로 패턴 상부보다 빠르게 일어나는 것이 확인되었다. 이는 Cu2+ 이온의 확산계수가 2.65×10-10 m2/s 로 초당 16.3 ㎛정도의 평균 이동거리를 가짐으로, 이 값이 다마신 패턴에서는 충분히 커서 원활하게 패턴 내부까지 이온 공급이 이루어지나, 수십 micron 크기를 갖는 PCB 크기에서는 소진된 구리이온을 보충해 주기 위해 충분한 시간이 필요하기 때문인 것으로 확인되었다. 구리 이온을 충분히 공급해 주기 위해 전류밀도를 낮춰 Cu2+ 이온이 확산할 수 있는 충분한 시간을 할애해 줌으로써 두께 균일도가 향상되는 것을 알 수 있었다.

無電解 Ni-Cu-P 廢 도금액의 재사용에 관한 연구 (A Study on Reusing of Electroless Ni-Cu-P Waste Solution)

  • 오이식
    • 자원리싸이클링
    • /
    • 제10권2호
    • /
    • pp.27-33
    • /
    • 2001
  • 무전해 Ni-Cu-P폐 도금액의 재사용에 대해 소정의 조건에서 조사하였다. 아연화처리한 후 니켈 촉매의 처리는 니켈 촉매처리를 하지 않았을 때 보다 도금시간이 연장되었다 Batch type에서 새로 제조한 도금액에 폐 도금액을 50% 첨가하여도 무전해 Ni-Cu-P 폐 도금액의 재사용이 가능하였다. 새로 제조한 도금액에 소모된 도금액의 성분을 연속적으로 보충하여 도금하면(Continuous type), 보충하지 않았을 경우(B기ch type)보다 도금시간이 10배 연장되었다. 새로 제조한 도금액에 폐 도금액 50%를 첨가하여 소모된 도금액의 성분을 연속적으로 보충할 경우(Continuous type)의 도금시간은 보충하지 않았을 경우(Batch type)의 도금시간 보다 3.7배 연장되었다. 도금층의 불량과 급격한 도금속도의 감소는 도금층의 Ni과 Cu의 성분 변화에 큰 영향을 미쳤다.

  • PDF

무전해 Ni-Cu-B 폐 도금액의 재사용에 관한 연구 (A Study on Reusing of Electroless Ni-Cu-B Waste Solution)

  • 오이식;배영한
    • 자원리싸이클링
    • /
    • 제12권1호
    • /
    • pp.18-24
    • /
    • 2003
  • 무전해 Ni-Cu-B 폐 도금액의 재사용에 대해 소정의 조건에서 조사하였다. 아연화처리한 후 니켈 촉매의 처리는 니켈 촉매처리를 하지 않았을 때 보다 도금시간이 연장되었다. Batch type에서 새로 제조한 도금액에 폐 도금액을 40% 첨가하여도 무전해 Ni-Cu-B 폐 도금액의 재사용이 가능하였다. 새로 제조한 도금액에 소모된 도금액의 성분을 연속적으로 보충하여 도금하면(continuous type), 보충하지 않았을 경우(batch type) 보다 도금시간이 6배 연장되었다. 새로 제조한 도금액에 폐 도금액 40%를 첨가하여 소모된 도금 액의 성분을 연속적으로 보충할 경우(continuous type)의 도금시간은 보충하지 않았을 경우(continuous type)의 도금시간 보다 2배 연장되었다. 도금층의 불량과 급격한 도금속도의 감소는 도금층의 Ni과 Cu의 성분 변화에 큰 영향을 미쳤다.

산업도금폐수 처리에 사용된 탄소폼 흡착소재의 중금속 탈착 및 회수에 관한 연구 (Study on Heavy Metal Desorption and Recovery of the Carbon Foam used in Industrial Plating Wastewater Treatment as Adsorbent)

  • 이다영;이창구;김대운;박상현;권지향;이상협
    • 대한환경공학회지
    • /
    • 제38권11호
    • /
    • pp.627-634
    • /
    • 2016
  • 본 연구에서는 탄소폼 흡착소재를 이용하여 산업도금폐수로부터 중금속을 흡착 제거한 후 탈착용액을 이용하여 제거된 중금속을 용출하고 회수하는 과정의 특성을 평가해 보고자 하였다. 용액의 조성에 따른 복합 중금속의 탈착 특성을 살펴본 결과 증류수 조건에서는 용출이 관측되지 않았으며, 탈착용액으로 HCl과 $H_2SO_4 $를 이용한 경우 높은 중금속 농도를 나타내었다. 탈착 용액을 이용함과 더불어 물리적 기술인 초음파 처리를 이용한 경우 중금속의 용출이 증진되는 것을 확인하였으며, 초음파 장치의 출력이 높고 반응 시간이 길수록 효율도 증가하는 것으로 나타났다. 탄소폼 흡착소재를 구리도금 세척수 처리에 적용시켜본 결과 200 반응기부피(Bed volume) 동안 안정적인 제거 성능을 나타내었으며, 흡착된 구리는 탈착용액을 이용하여 용출시킨 후 직류 전원 장치를 이용하여 회수할 수 있었다. 또한 구리가 회수된 탈착용액은 재이용 효율은 84.2%로 나타났다.

무전해 동도금 Throwing Power (TP) 및 두께 편차 개선 (Improvement of the Throwing Power (TP) and Thickness Uniformity in the Electroless Copper Plating)

  • 서정욱;이진욱;원용선
    • 청정기술
    • /
    • 제17권2호
    • /
    • pp.103-109
    • /
    • 2011
  • 전기도금의 seed layer를 형성하는 무전해 동도금 공정의 throwing power (TP)와 두께 편차를 개선하기 위한 공정 최적화 방법을 제시하였다. 실험계획법 (DOE)을 이용하여 가능한 모든 공정 인자들 가운데 TP와 두께 편차에 가장 큰 영향을 미치는 주요 인자를 파악해 보았다. 균일성을 가진 via filling을 위해서는 도금액 내의 Cu 이온의 농도를 높여주고 도금 온도를 낮추어 주는 것이 바람직한 것으로 판단되었으며 이는 표면 반응성의 측면에서 설명되었다. Kinetic Monte Carlo (MC) 모사가 이를 시각화하기 위해 도입되었으며 실험에서 관찰된 현상을 정성적으로 무리 없이 설명할 수 있었다. 실험계획법을 이용한 체계적인 실험과 이를 뒷받침하는 이론적인 모사가 결합된 본 연구의 접근법은 관련 공정에서 유용하게 활용될 수 있을 것이다.

무전해(無電解) 구리 도금폐액(鍍金廢液)으로부터 구리의 회수(回收) 연구(硏究) (Recovery of Copper in Wastewater from Electroless Plating Process)

  • 이화영;고현백
    • 자원리싸이클링
    • /
    • 제21권6호
    • /
    • pp.39-44
    • /
    • 2012
  • 무전해 구리 도금폐수로부터 증발농축 및 전해채취법을 이용하여 구리를 회수하기 위한 연구를 수행하였다. 무전해 구리 도금폐수의 분석결과, Cu 함량은 582 mg/l로 나타났으며, 미량의 Fe 성분이 함유되어 있었다. 또한, 로셀염의 첨가로 인하여 COD 9,560 mg/l, TOC 13,100 mg/l로써 매우 높았으며, 포름알데히드가 산화된 formic acid의 함량은 7.73%로 나타났다. 실험결과, 구리의 전해채취시 전류밀도가 증가할수록 전류효율은 감소하는 것으로 나타났다. 또한, 전류효율을 80% 이상으로 유지하기 위해서는 구리의 전해채취시 전류밀도를 $40mA/cm^2$ 이하로 낮추어야 함을 알 수 있었다. 전해채취를 통해 얻은 Cu중의 평균 Fe 함량은 황산농도 2 vol% 및 10 vol%에서 각각 0.021% 및 0.01%로 나타나 황산농도가 높을수록 Fe 혼입을 억제할 수 있는 것으로 나타났다.

결정질 실리콘 태양전지에 적용하기 위한 도금법으로 형성환 Ni/Cu 전극에 관한 연구 (Investigation of Ni/Cu Contact for Crystalline Silicon Solar Cells)

  • 김범호;최준영;이은주;이수홍
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2007년도 춘계학술대회
    • /
    • pp.250-253
    • /
    • 2007
  • An evaporated Ti/Pd/Ag contact system is most widely used to make high-efficiency silicon solar cells, however, the system is not cost effective due to expensive materials and vacuum techniques. Commercial solar cells with screen-printed contacts formed by using Ag paste suffer from a low fill factor and a high shading loss because of high contact resistance and low aspect ratio. Low-cost Ni and Cu metal contacts have been formed by using electroless plating and electroplating techniques to replace the Ti/Pd/Ag and screen-printed Ag contacts. Ni/Cu alloy is plated on a silicon substrate by electro-deposition of the alloy from an acetate electrolyte solution, and nickel-silicide formation at the interface between the silicon and the nickel enhances stability and reduces the contact resistance. It was, therefore, found that nickel-silicide was suitable for high-efficiency solar cell applications. The Ni contact was formed on the front grid pattern by electroless plating followed by anneal ing at $380{\sim}400^{\circ}C$ for $15{\sim}30$ min at $N_{2}$ gas to allow formation of a nickel-silicide in a tube furnace or a rapid thermal processing(RTP) chamber because nickel is transformed to NiSi at $380{\sim}400^{\circ}C$. The Ni plating solution is composed of a mixture of $NiCl_{2}$ as a main nickel source. Cu was electroplated on the Ni layer by using a light induced plating method. The Cu electroplating solution was made up of a commercially available acid sulfate bath and additives to reduce the stress of the copper layer. The Ni/Cu contact was found to be well suited for high-efficiency solar cells and was successfully formed by using electroless plating and electroplating, which are more cost effective than vacuum evaporation. In this paper, we investigated low-cost Ni/Cu contact formation by electroless and electroplating for crystalline silicon solar cells.

  • PDF

인쇄회로기판상의 금속 배선을 위한 구리 도금막 형성 : 무전해 중성공정 (Electroless Plated Copper Thin Film for Metallization on Printed Circuit Board : Neutral Process)

  • 조양래;이연승;나사균
    • 한국재료학회지
    • /
    • 제23권11호
    • /
    • pp.661-665
    • /
    • 2013
  • We investigated the characteristics of electroless plated Cu films on screen printed Ag/Anodized Al substrate. Cu plating was attempted using neutral electroless plating processes to minimize damage of the anodized Al substrate; this method used sodium hypophosphite instead of formaldehyde as a reducing agent. The basic electroless solution consisted of $CuSO_4{\cdot}5H_2O$ as the main metal source, $NaH_2PO_2{\cdot}H_2O$ as the reducing agent, $C_6H_5Na_3O_7{\cdot}2H_2O$ and $NH_4Cl$ as the complex agents, and $NiSO_4{\cdot}6H_2O$ as the catalyser for the oxidation of the reducing agent, dissolved in deionized water. The pH of the Cu plating solutions was adjusted using $NH_4OH$. According to the variation of pH in the range of 6.5~8, the electroless plated Cu films were coated on screen printed Ag pattern/anodized Al/Al at $70^{\circ}C$. We investigated the surface morphology change of the Cu films using FE-SEM (Field Emission Scanning Electron Microscopy). The chemical composition of the Cu film was determined using XPS (X-ray Photoelectron Spectroscopy). The crystal structures of the Cu films were investigated using XRD (X-ray Diffraction). Using electroless plating at pH 7, the structures of the plated Cu-rich films were typical fcc-Cu; however, a slight Ni component was co-deposited. Finally, we found that the formation of Cu film plated selectively on PCB without any lithography is possible using a neutral electroless plating process.

Non-sintering Preparation of Copper (II) Oxide Powder for Electroplating via 2-step Chemical Reaction

  • Lee, Seung Bum;Jung, Rae Yoon;Kim, Sunhoe
    • Journal of Electrochemical Science and Technology
    • /
    • 제8권2호
    • /
    • pp.146-154
    • /
    • 2017
  • In this study, copper (II) oxide was prepared for use in a copper electroplating solution. Copper chloride powder and copper (II) oxide are widely used as raw materials for electroplating. Copper (II) oxide was synthesized in this study using a two-step chemical reaction. Herein, we developed a method for the preparation of copper (II) oxide without the use of sintering. In the first step, copper carbonate was prepared without sintering, and then copper (II) oxide was synthesized without sintering using sodium hydroxide. The optimum amount of sodium hydroxide used for this process was 120 g and the optimum reaction temperature was $120^{\circ}C$ regardless of the starting material.