• Title/Summary/Keyword: Copper Oxide

Search Result 445, Processing Time 0.03 seconds

A Study on Thermal Conductivity Characteristics of Nanofluids (나노유체 열전도도 특성 연구)

  • Hwang, Yu-Jin;Park, Jae-Hong;Kim, Hong-Suk;Lee, Jae-Keun
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.162-167
    • /
    • 2006
  • Nanofluid is a kind of new engineering material consisting of nanoparticles dispersed in base fluid. Nanofluids could have various applications such as magnetic fluids, heat exchanger working fluids, lubricants, drug delivery and so on in present study, various nanoparticles, such as MWCNT (Multi-walled Carbon Nanotube), fullerene, copper oxide, and silicon dioxide are used to produce nanofluids. As base fluids, DI-water, ethylene glycol, oil, and silicon oil are used. To investigate the thermo-physical properties of nanofluids, thermal conductivity and kinematic viscosity are measured. Stability estimation of nanofluid is conducted with UV-vis spectrophoto-meter. In this study, the high pressure homogenizer is the most effective method to produce nanofluid with the prepared nanoparticle and base fluid. Excellently stable nanofluids are produced with the magnetron sputtering system. Thermal conductivity of nanofluid increases with increasing particle volume fraction except water-based fullerene nanofluid which has lower thermal conductivity than base fluid due to its lower thermal conductivity, 0.4 W/mK. The experimental results can't be predicted by Jang and Choi model.

  • PDF

One Step Electrodeposition of Copper Zinc Tin Sulfide Using Sodium Thiocyanate as Complexing Agent

  • Sani, Rabiya;Manivannan, R.;Victoria, S. Noyel
    • Journal of Electrochemical Science and Technology
    • /
    • v.9 no.4
    • /
    • pp.308-319
    • /
    • 2018
  • Single step electrodeposition of $Cu_2ZnSnS_4$ (CZTS) for solar cell applications was studied using an aqueous thiocyanate based electrolyte. The sodium thiocyanate complexing agent was found to decrease the difference in the deposition potential of the elements. X-ray diffraction analysis of the samples indicates the formation of kesterite phase CZTS. UV-vis studies reveal the band gap of the deposits to be in the range of 1.2 - 1.5 eV. The thickness of the deposit was found to decrease with increase in pH of the electrolyte. Nearly stoichiometric composition was obtained for CZTS films coated at pH 2 and 2.5. I-V characterization of the film with indium tin oxide (ITO) substrate in the presence and the absence of light source indicate that the resistance decrease significantly in the presence of light indicating suitability of the deposits for solar cell applications. Results of electrochemical impedance spectroscopic studies reveal that the cathodic process for sulfur reduction is the slowest among all the elements.

Conceptual design of 240 mm 3 T no-insulation multi-width REBCO magnet

  • Choi, Kibum;Lee, Jung Tae;Bang, Jeseok;Bong, Uijong;Park, Jeonghwan;Hahn, Seungyong
    • Progress in Superconductivity and Cryogenics
    • /
    • v.21 no.3
    • /
    • pp.43-46
    • /
    • 2019
  • A rare-earth barium copper oxide (REBCO) superconducting magnet was designed using no-insulation (NI) and multi-width (MW) winding techniques. The proposed magnet is comprised of 58 REBCO-wound single pancake coils with a bore size of 240 mm. When the magnet is operated at 20 K, the center magnetic flux density is designed to reach 3 T with an operational current of 169.55 A, 70 % of its critical current. The critical current was evaluated using experimental data of a short REBCO conductor sample. The designed magnet was then simulated using FEM software with uniform current density model. Magnetic field and mechanical properties of the magnet are evaluated using the simulated data. This magnet was designed as one of the base designs for the project "Tesla-Level Magnets with Large Bore Sizes for Industrial Applications" which was initiated in 2019, and will be wound using REBCO wires with the defect-irrelevant-winding (DIW) technique incorporated to reduce the overall manufacturing cost.

Use of copper tungsten oxide as a liquid phase sintering aid for barium hexaferrite

  • Fisher, John G.;Le, Phan Gia;Meng, Meng;Heo, Sang-Hyeon;Bak, Tae-Jin;Moon, Byeol-Lee;Park, In-San;Lee, Dong-Kyu;Lee, Wu-Hui
    • Journal of Ceramic Processing Research
    • /
    • v.19 no.5
    • /
    • pp.434-438
    • /
    • 2018
  • The sintering behavior of $BaFe_{12}O_{19}$ with the addition of one and three weight % of $CuWO_4$ as a liquid phase sintering aid is studied. Samples are sintered in the temperature range $900-1250^{\circ}C$ and the effect of $CuWO_4$ addition on density, microstructure, phase composition and magnetic properties is examined. Compared to $BaFe_{12}O_{19}$ with no sintering aid addition, addition of 1 wt % $CuWO_4$ retards densification. Addition of 3 wt % $CuWO_4$ promotes densification at lower sintering temperatures but retards densification at temperatures > $1050^{\circ}C$. Three wt % $CuWO_4$ addition induces the formation of $BaWO_4$ and $Ba_3WFe_2O_9$ secondary phases at temperatures ${\geq}1100^{\circ}C$. Addition of $CuWO_4$ causes a decrease in saturation magnetization, remanent magnetization and coercivity.

Investigation of Wood Species and Conservation Status of Wooden Seated Amitabha Buddha Triad and Wooden Amitabha Buddha Altarpiece of Yongmunsa Temple, Yecheon, Korea (Treasure)

  • CHOI, Jaewan;PARK, Junghae;KIM, Soochul
    • Journal of the Korean Wood Science and Technology
    • /
    • v.50 no.3
    • /
    • pp.193-217
    • /
    • 2022
  • The Wooden Seated Amitabha Buddha Triad and Altarpiece have not been the subjects of definitive species identification and scientific analysis. In this study, visual investigation, portable X-ray fluorescence (p-XRF), species identification, and lacquer layer observations were carried out to determine the original materials and conservation status. Cracks, exfoliation and discoloration were detected during the visual investigation. The p-XRF data indicated that chrome oxide green, malachite, gold, cadmium red, cinnabar, minium, hematite, lead white, ink stick (Carbon), and copper were used for pigments and the coronet accessory. Tilia spp., Abies spp., and Pinus spp. were identified from both the Buddha Triad and Altarpiece. Finally, lacquer layer analyses of the base layer, lacquer layer, orange pigment layer, and gold leaf layer observed modern synthetic pigments likely used in previous conservation. As the Korean Cultural Heritage Charter and the International Charter for the Conservation and Restoration of Monuments and Sites clearly state that objects of cultural heritage must be conserved using their original materials, future conservation of these objects should utilize the data obtained in this study to employ traditional materials. Furthermore, a deterioration map diagnosis can be applied together with the obtained analysis data to understand the conservation status of and inform an appropriate and authentic conservation treatment for the Buddha Triad and Altarpiece.

Characterization of Anodized Al 1050 with Electrochemically Deposited Cu, Ni and Cu/Ni and Their Behavior in a Model Corrosive Medium

  • Girginov, Christian;Kozhukharov, Stephan;Tsanev, Alexander;Dishliev, Angel
    • Journal of Electrochemical Science and Technology
    • /
    • v.12 no.2
    • /
    • pp.188-203
    • /
    • 2021
  • The specific benefits of the modified films formed on preliminary anodized aluminum, including the versatility of their potential applications impose the need for evaluation of the exploitation reliability of these films. In this aspect, the durability of Cu and Ni modified anodized aluminum oxide (AAO) films on the low-doped AA1050 alloy was assessed through extended exposure to a 3.5% NaCl model corrosive medium. The electrochemical measurements by means of electrochemical impedance spectroscopy (EIS) and potentiodynamic scanning (PDS) after 24 and 720 hours of exposure have revealed that the obtained films do not change their obvious barrier properties. In addition, supplemental analyses of the coatings were performed, in order to elucidate the impact of the AC-deposition of Cu and Ni inside the pores. The scanning electron microscopy (SEM) images have shown that the surface topology is not affected and resembles the typical surface of an etched metal. The subsequent energy dispersive X-ray spectroscopy (EDX) tests have revealed a predominance of Cu in the combined AAO-Cu/Ni layers, whereas additional X-ray photoelectron (XPS) analyses showed that both metals form oxides with different oxidation states due to alterations in the deposition conditions, promoted by the application of AC-polarization of the samples.

Anti-Icing Characteristics of Aluminum 6061 Alloys According to Surface Nanostructure (알루미늄 6061 합금의 표면 나노 구조물 변화에 따른 방빙 특성 연구)

  • Rian, Kim;Chanyoung, Jeong
    • Corrosion Science and Technology
    • /
    • v.21 no.6
    • /
    • pp.476-486
    • /
    • 2022
  • Recently, aluminum 6061 instead of copper alloy is used for cooling heat exchangers used in the internal combustion of engines due to its economic feasibility, lightweight, and excellent thermal conductivity. In this study, aluminum 6061 alloy was anodized with oxalic acid, phosphoric acid, or chromic acid as an anodizing electrolyte at the same concentration of 0.3 M. After the third anodization, FDTS, a material with low surface energy, was coated to compare hydrophobic properties and anti-icing characteristics. Aluminum was converted into an anodization film after anodization on the surface, which was confirmed through Energy Dispersive X-ray Spectroscopy (EDS). Pore distance, interpore distance, anodization film thickness, and solid fraction were measured with a Field Emission Scanning Electron Microscope (FESEM). For anti-icing, hydrophobic surfaces were anodized with oxalic acid, phosphoric acid, or chromic acid solution. The sample anodized in oxalic acid had the lowest solid fraction. It had the highest contact angle for water droplets and the lowest contact hysteresis angle. The anti-icing contact angle showed a tendency to decrease for specimens in all solutions.

Numerical analysis on the critical current evaluation and the correction of no-insulation HTS coil

  • Bonghyun Cho;Jiho Lee
    • Progress in Superconductivity and Cryogenics
    • /
    • v.25 no.1
    • /
    • pp.16-20
    • /
    • 2023
  • The International Electrotechnical Commission (IEC) 61788-26:2020 provides guidelines for measuring the critical current of Rare-earth barium copper oxide (REBCO) tapes using two methods: linear ramp and step-hold methods. The critical current measurement criterion, 1 or 0.1 μV/cm of electric field from IEC 61788-26 has been normally applied to REBCO coils or magnets. No-insulation (NI) winding technique has many advantages in aspects of electrical and thermal stability and mechanical integrity. However, the leak current from the NI REBCO coil can cause distortion in critical current measurement due to the characteristic resistance which causes the radial current flow paths. In this paper, we simulated the NI REBCO coil by applying both linear ramp and step-hold methods based on a simplified equivalent circuit model. Using the circuit analysis, we analyzed and evaluated both methods. By using the equivalent circuit model, we can evaluate the critical current of the NI REBCO coil, resulting in an estimation error within 0.1%. We also evaluate the accuracy of critical current measurement using both the linear ramp and step-hold methods. The accuracy of the linear ramp method is influenced by the inductive voltage, whereas the accuracy of the step-hold method depends on the duration of the hold-time. An adequate hold time, typically 5 to 10 times the time constant (τ), makes the step-hold method more accurate than the linear ramp method.

Discretized solenoid design of a 1.5 T and a 3.0 T REBCO whole-body MRI magnets with cost comparison according to magnetic flux

  • Wonju Jung;Geonyoung Kim;Kibum Choi;Hyunsoo Park;Seungyong Hahn
    • Progress in Superconductivity and Cryogenics
    • /
    • v.25 no.4
    • /
    • pp.75-80
    • /
    • 2023
  • Rare earth barium copper oxide (REBCO) materials have shown the possibility of high-temperature superconductor (HTS) magnetic resonance imaging (MRI) magnets due to their elevated transition temperature. While numerous MRI magnet designs have emerged, there is a growing emphasis on estimating the cost before manufacturing. In this paper, we propose two designs of REBCO whole-body MRI magnets: (1) 1.5 T and (2) 3.0 T, the standard center field choices for hospital use, and compare their costs based on conductor usage. The basis topology of the design method is based on discretized solenoids to enhance field homogeneity. Magnetic stress calculation is done to further prove the mechanical feasibility of their construction. Multi-width winding technique and outer notch structure are used to improve critical current characteristic. We apply consistent constraints for current margins, sizes, and field homogeneities to ensure an equal cost comparison. A graph is plotted to show the cost increase with magnetic flux growth. Additionally, we compare our designs to two additional MRI magnet designs from other publications with respect to the cost and magnetic flux, and present the linear relationship between them.

Synthesis of Cu2O Particles Using the Hydrothermal Method (수열합성법을 이용한 Cu2O 입자의 합성)

  • Seongmin Shin;Kyunghwan Kim;Jeongsoo Hong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.1
    • /
    • pp.63-67
    • /
    • 2024
  • In this study, we successfully synthesized copper oxide (Cu2O) particles through a hydrothermal method at a relatively low temperature (150℃). The synthesis involved the precise control of molar concentrations of NaOH. Notably, Cu2O particles were effectively synthesized when NaOH concentrations of 0.15 M and 0.20 M were utilized. While attempts were made at different molar concentrations, the synthesis of pure Cu2O particles was only achieved at concentrations of 0.15 M and 0.20 M. In this experimental investigation, Cu2O synthesized under these specific conditions exhibited absorption characteristics within the wavelength range of 640 to 570 nm, consistently exhibiting a band gap energy of 1.9 eV. These Cu2O particles, characterized by their small band gap energy and straightforward synthetic method, hold significant promise for various applications including semiconductors and solar cells.