• Title/Summary/Keyword: Copper - 64, 67($^{64/67}Cu$)

Search Result 7, Processing Time 0.027 seconds

Application of extraction chromatographic techniques for separation and purification of emerging radiometals 44/47Sc and 64/67Cu

  • Vyas, Chirag K.;Park, Jeong Hoon;Yang, Seung Dae
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.2 no.2
    • /
    • pp.84-95
    • /
    • 2016
  • Considerably increasing interest in using the theranostic isotopes/ isotope pairs of radiometals like $^{44/47}Sc$ and $^{64/67}Cu$ for diagnosis and/or therapeutic applications in the nuclear medicine procedures necessitates its reliable production and supply. Separation and purification of no-carrier-added (NCA) isotopes from macro quantitates of the irradiated target matrix along with other impurities is a cardinal procedure amongst several other steps involved in its production. Multitudinous methods including but not limited to liquid-liquid (solvent) extraction, extraction chromatography (EXC), ion exchange, electrodeposition and sublimation are routinely applied either solitarily or in combination for the separation and purification of radioisotopes depending on their production routes, radioisotope of interest and impurities involved. However, application of EXC though has shown promises towards the numerous separation techniques have not received much attention as far as its application prospects in the field of nuclear medicine are concerned. Advances in the recent past for application of the EXC resins in separation and purification of the several medically important radioisotopes at ultra-high purity have shown promising behavior with respect to their operation simplicity, acidic and radiolytic stability, separation efficiencies and speedy procedures with the enhanced and excellent extraction abilities. In this mini review we will be talking about the recent developments in the application and the use of EXC techniques for the separation and purification of $^{44/47}Sc$ and $^{64/67}Cu$ for medical applications. Furthermore, we will also discuss the scientific and practical aspects of EXC in the view of separation of the NCA trace amount of radionuclides.

The production and application of therapeutic 67Cu radioisotope in nuclear medicine

  • Kim, Gye-Hong;Lee, Kyo Chul;Park, Ji-Ae;An, Gwang-Il;Lim, Sang Mo;Kim, Jung Young;Kim, Byung Il
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.1 no.1
    • /
    • pp.23-30
    • /
    • 2015
  • Radioisotopes emitting low-range highly ionizing radiation such as ${\beta}$-particles are of increasing significance in internal radiotherapy. Among the ${\beta}$-particle emitting radioisotopes, $^{67}Cu$ is an attractive radioisotope for various nuclear medicine applications due to its medium energy ${\beta}$-particle, gamma emissions, and 61.83-hour half-life, which can also be used with $^{64}Cu$ for PET imaging. The production and application of the ${\beta}$-emitting radioisotope $^{67}Cu$ for therapeutic radiopharmaceutical are outlined, and different production routes are discussed. A survey of copper chelators used for antibody labeling is provided. It has been produced via proton, alpha, neutron, and gamma irradiations followed by solvent extraction, ion exchange, electrodeposition. Clinical studies using $^{67}Cu$-labelled antibodies in lymphoma, colon carcinoma and bladder cancer patients are reviewed. Widespread use of this isotope for clinical studies and preliminary treatments has been limited by unreliable supplies, cost, and difficulty in obtaining therapeutic quantities.

Preliminary studies for production of 61Cu using natural nickel target with RFT-30 cyclotron

  • Lee, Jun Young;Hur, Min Goo;Yang, Seung Dae;Park, Jeong Hoon
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.5 no.2
    • /
    • pp.79-82
    • /
    • 2019
  • 61Cu is a promising PET radiometal having favorable nuclear decay characteristics with appropriate half-life of 3.3 h. Owing its promising capabilities in radiopharmaceutical chemistry and its chemical similarities with its isotopes 64Cu and 67Cu, in this work we have tried to optimize the production and separation conditions of 61Cu. 61Cu was produced via (p, x) reaction with natural nickel which was electroplated on the high purity silver coated copper backing target holder. The optimization of target electrodeposition, beam energy and current modulation, target dissolution and separation were optimized in this study. Preliminary studies show that 61Cu was successfully produced and separated which can be further extended for the production of 64Cu and 67Cu.

Manufacturing of Copper(II) Oxide Powder for Electroplating from NaClO3 Type Etching Wastes

  • Hong, In Kwon;Lee, Seung Bum;Kim, Sunhoe
    • Journal of Electrochemical Science and Technology
    • /
    • v.11 no.1
    • /
    • pp.60-67
    • /
    • 2020
  • In this study, copper (II) oxide powder for electroplating was prepared by recovering CuCl2 from NaClO3 type etching wastes via recovered non-sintering two step chemical reaction. In case of alkali copper carbonate [mCuCo3·nCu(OH)2], first reaction product, CuCo3 is produced more than Cu(OH)2 when the reaction molar ratio of sodium carbonate is low, since m is larger than n. As the reaction molar ratio of sodium carbonate increased, m is larger than n and Cu(OH)2 was produced more than CuCO3. In the case of m has same values as n, the optimum reaction mole ratio was 1.44 at the reaction temperature of 80℃ based on the theoretical copper content of 57.5 wt. %. The optimum amount of sodium hydroxide was 120 g at 80℃ for production of copper (II) oxide prepared by using basic copper carbonate product of first reaction. At this time, the yield of copper (II) oxide was 96.6 wt.%. Also, the chloride ion concentration was 9.7 mg/L. The properties of produced copper (II) oxide such as mean particle size, dissolution time for sulfuric acid, and repose angle were 19.5 mm, 64 second, and 34.8°, respectively. As a result of the hole filling test, it was found that the copper oxide (II) prepared with 120 g of sodium hydroxide, the optimum amount of basic hydroxide for copper carbonate, has a hole filling of 11.0 mm, which satisfies the general hole filling management range of 15 mm or less.

Enhancement of Skin Permeation of Wrinkle Improvement Peptides GHKs Using Liposomes Containing Skin Penetrating Peptides (피부 투과 펩티드가 함유된 리포좀을 이용한 주름 개선 펩티드 GHKs의 피부 흡수 증진)

  • Park, Su In;An, Gyu Min;Kim, Min Gi;Heo, Soo Hyeon;Shin, Moon Sam
    • Journal of the Korean Applied Science and Technology
    • /
    • v.36 no.3
    • /
    • pp.853-865
    • /
    • 2019
  • In this study, the skin permeability was measured by adding skin penetrating peptides, arginine oligomers R4(tetra-D-arginine), R6(hexa-D-arginine) to little skin-permeable wrinkle improvement peptides GHK, GHK-Cu, and Pal-GHK liposomes, and the results were analyzed by the following six cases. (1) In cases where only wrinkle improvement peptides GHK, GHK-Cu, and Pal-GHK were contained liposomes; the final cumulative permeations in 24 hours were 6.05%, 7.4%, and 8.83% respectively. (2) In cases where arginine oligomers R4, R6 were added to GHK liposomes; the final cumulative permeations in 24 hours were 13.63% and 7.68%. (3) In cases where R4, R6 were added to GHK-Cu liposomes; the final cumulative permeations in 24 hours were 15.46% and 8.64%. (4) In cases where R4, R6 were added to Pal-GHK liposomes; the final cumulative permeations in 24 hours were 16.9% and 10.67%. (5) In cases where R4 were added to GHK, GHK-Cu, and Pal-GHK liposomes; the final cumulative permeations in 24 hours were 13.63%, 15.46%, and 16.9% respectively. (6) In cases where R6 were added to GHK, GHK-Cu, and Pal-GHK liposomes; the final cumulative permeations in 24 hours were 7.68%, 8.64%, and 10.67% respectively. This experiment showed that skin absorption of GHK was increased by copper ion (Cu2+) and palmitic acid and skin absorption of wrinkle improvement peptides was enhanced by cell penetrating peptides, and R4 showed higher effect than R6 in GHK, GHK-Cu and Pal-GHK. Through this process, we propose broad use and application in wrinkle improvement functional cosmetics by presenting the optimal conditions for increasing skin absorption of GHK, GHK-Cu, thus maximizing its efficacy.

Chemical composition of nuts and seeds sold in Korea

  • Chung, Keun Hee;Shin, Kyung Ok;Hwang, Hyo Jeong;Choi, Kyung-Soon
    • Nutrition Research and Practice
    • /
    • v.7 no.2
    • /
    • pp.82-88
    • /
    • 2013
  • Eleven types of nuts and seeds were analyzed to determine their energy (326-733 mg), moisture (1.6-18.3 mg), carbohydrate (8.8-70.9 mg), protein (4.9-30.5 mg), lipid (2.5-69.8 mg), and ash (1.2-5.5 mg) contents per 100 g of sample. Energy content was highest in pine nuts (733 mg/100 g), carbohydrate level was highest in dried figs (70.9 mg/100 g) and protein was highest in peanuts (30.5 mg/100 g). The amino acid compositions of nuts and seeds were characterized by the dominance of hydrophobic (range = 1,348.6-10,284.6 mg), hydrophilic (range = 341.1-3,244.3 mg), acidic (range = 956.1-8,426.5 mg), and basic (range = 408.6-4,738.5 mg) amino acids. Monounsaturated fatty acids (MUFA) were highest in macadamia nuts (81.3%), whereas polyunsaturated fatty acids (PUFA) were highest in the walnuts (76.7%). Macadamia nuts did not contain any vitamin E, whereas sunflower seeds contained the highest level (60.3 mg/kg). Iron (Fe) content was highest in pumpkin seeds ($95.85{\pm}33.01$ ppm), zinc (Zn) content was highest in pistachios ($67.24{\pm}30.25$ ppm), copper (Cu) content was greatest in walnuts ($25.45{\pm}21.51$ ppm), and lead (Pb) content was greatest in wheat nuts ($25.49{\pm}4.64$ ppm), significantly (P < 0.05). In conclusion, current commercial nuts and seeds have no safety concerns, although further analysis of Pb contents is necessary to ensure safety.

Rice Safety and Heavy Metal Contents in the Soil on "Top-Rice" Cultivation Area (탑라이스 생산지역 논토양 중 중금속 함량과 쌀의 안전성)

  • Park, Sang-Won;Yoon, Mi-Yeon;Kim, Jin-Kyoung;Park, Byung-Jun;Kim, Won-Il;Shin, Joung-Du;Kwon, Oh-Kyung;Chung, Duck-Hwa
    • Journal of Food Hygiene and Safety
    • /
    • v.23 no.3
    • /
    • pp.239-247
    • /
    • 2008
  • Objective of this study was to investigate residual the levels of heavy metals in rice grain and soils of "Top-Rice" and common rice cultivation areas from 2005 to 2007. Soil and rice grain samples were taken from 33 "Top-rice" areas and neighboring paddies, and analyzed for the elements using ICP-OES and ICP-TOF-MS after acid digestion. A concentration of arsenic in paddy soil was 1.33 mg/kg which was below 1/5-1/11 fold of the threshold levels(concern: 4 mg/kg, action: 10 mg/kg), and paddy soil was 0.06 mg/kg of Cd(cadmium) being below 1/25-1/67 fold of the limits(concern: 1.5 mg/kg, action: 4 mg/kg). A level of Cu(copper) in paddy soil was 4.57 mg/kg which was below 1/11-1/27 fold of the threshold levels(concern: 50 mg/kg, action: 125 mg/kg), and Pb(lead) concentration in paddy soil was found to be a 4.68 mg/kg. In addition, Hg(mercury) concentration in paddy soil was to be a 0.03 mg/kg, which was below 1/131-1/328 fold of the threshold levels(concern: 4 mg/kg, action: 10 mg/kg). The average concentrations of As, Cd, Cu, Pb and Hg in the polished rice samples were 0.037, 0.043, 0.280, 0.048 and 0.002 mg/kg, respectively. These levels are lower than those of other countries in rice grains. Assuming the rice consumption of 205.7 g/day by total dietary supplements in Korea, the amount of total weekly metal intake of As, Cd, Cu, Pb and Hg by polished rice were estimated to be 0.0892, 1.035, 6.712, 1.161 and 0.054 ${\mu}g/kg$ body weigh/week, respectively. The PTWI(%) of As, Cd, Cu, Pb and Hg were 5.95(inorganic arsenic), 0.26(total arsenic), 14.79, 0.19, 4.65 and 1.07% estimated to be 0.0892, 1.035, 6.712, 1.161 and 0.054 ${\mu}g/kg$ body weigh/week, respectively. In conclusion, it was appeared that the heavy metals contamination in the brown and polished rice should not be worried in Korea.