• Title/Summary/Keyword: Coordinated Planning

Search Result 37, Processing Time 0.023 seconds

A Study on the Fundamental Comparison of Simulation and Optimization Approaches for Water Resources Systems Planning and Management (수자원시스템의 효율적 운영을 위한 시뮬레이션과 최적화 기법의 원론적 비교 연구)

  • Kong, Jeong-Taek;Kim, Jaehee;Kim, Sheung-Kown
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.4
    • /
    • pp.373-387
    • /
    • 2013
  • For the efficient operation and management of the water resources system, coordinated operation of weirs and reservoirs is required. A simulation based, and an optimization based approaches are available to deal with the operation and management problems. The simulation based approach does not guarantee an optimal solution, and the optimization based approach is not so flexible to consider, complex, nonlinear problems we will face when trying to allocate water to different uses, various demand sectors in a basin. Hence, it is important to develop a model that would compensate for the weak points in both models. We will compare and contrast intrinsic and extrinsic properties of two modeling approaches, addressing issues related to setting system operation and control rules that would lead us to more efficient use of water in the basin. As a result, we propose to use CoWMOM(Coordinated weirs and multi-reservoir operating model), a "simulation based" optimization model for a simple simulation of the past periods, and for the real-time simulation process considering uncertain inflow.

Performance of Frequency Planning and Channel Allocation Algorithm for Unified Inter-Cell Interference Avoidance and Cancellation in OFDMA Cellular Systems (OFDMA 셀룰러 시스템에서 셀 간 간섭 회피 및 제거 기법을 적용한 주파수 설계와 채널 할당 알고리즘의 성능)

  • Lee, Jae-Hoon;Kim, Dong-Woo;Lee, Hee-Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.2A
    • /
    • pp.99-106
    • /
    • 2009
  • In this paper, we propose UCA algorithms that are applied to the unified inter-cell interference mitigation through frequency plannings in OFDMA cellular systems. Under three frequency plannings, UCA algorithms allocate frequency channels to UEs(User Equipments). Proposed UCA algorithms require the information of received signal power from home sector and neighbor sectors respectively. We compare all possible combinations of UCA algorithms and frequency plannings through compute simulation. A primary performance measure is the low 5th percentile of SINR at UEs. The proposed UCA algorithms can avoid the interference to neighbor cells by allocating relatively low transmit power to centrally-located UEs and cancel inter-cell interference at cell-edge UEs by a coordinated symbol repetition. We show that UCA algorithm 2 applied in frequency planning 1 is promising among other combinations of UCA algorithms and frequency palnnings in terms of the low 5th percentile of SINR at UEs.

A study on the Human Resource Management through Application of Daily Scheduling Check System (일일 공정 Check System을 활용한 인력관리 사례 연구)

  • Park Chan-Jeong;Park Hong-Tae
    • Korean Journal of Construction Engineering and Management
    • /
    • v.5 no.1 s.17
    • /
    • pp.124-132
    • /
    • 2004
  • A human resource management of the general contractors is to mostly deal with daily input by each subcontractor in construction fields. However, this way has some limitations; the identification of proper human-input and productivity, preventive activities or efforts for minimizing schedule delay. The reason why these limitations are that few systematic efforts through a coordinated field administration with the construction schedule planning and human resources. Therefore, on the basis of the construction schedule planning, human resource management of subcontractors is necessary to make for an improvement in construction schedule control. Daily Scheduling Check System(DSCS), as the linked human resources on an existed CPM scheduling software, was developed and this paper then verified validity and effectiveness of using the DSCS for the framework of some actual apartment construction projects

A Study on the Outdoor Space Design for Urban Mini Schools (도심형 소규모 초등학교의 외부공간 계획방향에 관한 연구)

  • Rieh, Sun-Young;Kwon, Min-Sung
    • Journal of the Korean Institute of Educational Facilities
    • /
    • v.20 no.2
    • /
    • pp.33-42
    • /
    • 2013
  • Due to the lack of available site in urban setting outdoor space in elementary schools are getting smaller and tend to be replaced by indoor spaces. Focusing on courtyard, piloti space and roof space, this study analyzed the current condition and usage of the outdoor spaces in the urban mini-schools based on the analysis of architectural drawing, interview, survey, and observation. Following issues are found for appropriate planning for outdoor spaces in the urban mini-schools. Firstly, roof space needs to be coordinated with the physical education and outdoor class curriculum and should be planned separately for quiet activities. Secondly, the piloti space should be planned as an independent space rather than a connection between classroom and outdoor space, with appropriate surveillance from teacher's space for the lower graders. Thirdly, courtyard space, typical space in urban mini school surrounded by densely arranged buildings, should be thermally controlled for outdoor class or resting with appropriate screen from noise to keep quiet atmosphere.

A Simulation-based Heuristic Algorithm for Determining a Periodic Order Policy at the Supply Chain: A Service Measure Perspective (공급사슬 내의 재고관리를 위한 모의실험에 기초한 발견적 기법: 봉사척도 관점)

  • Park, Chang-Kyu
    • IE interfaces
    • /
    • v.13 no.3
    • /
    • pp.424-430
    • /
    • 2000
  • Supply chain management (SCM) is an area that has recently received a great deal of attention in the business community. While SCM is relatively new, the idea of coordinated planning is not. During the last decades, many researchers have investigated multi-stage inventory problems. However, only a few papers address the problem of cost-optimal coordination of multi-stage inventory control with respect to service measures. Even published approaches have a shortcoming in dealing with a delivery lead time consisted of a shipping time and a waiting time. Assumed that there is no waiting time, or that the delivery lead time is implicitly compounded of a shipping time and a waiting time, the problem is often simplified into a multi-stage buffer allocation and a single-stage stochastic buffer sizing problem at all installations. This paper presents a simulation-based heuristic algorithm and a comparison with others for the problem that cannot be decomposed into a multi-stage buffer allocation and a single-stage stochastic buffer sizing problem because the waiting time ties together all stages. The comparison shows that the simulation-based heuristic algorithm performs better than other approaches in saving average inventory cost for both Poisson and Normal demands.

  • PDF

Modeling and Analysis of Load-Balancing Based on Base-Station CoMP with Guaranteed QoS

  • Feng, Lei;Li, WenJing;Yin, Mengjun;Qiu, Xuesong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.9
    • /
    • pp.2982-3003
    • /
    • 2014
  • With the explosive deployment of the wireless communications technology, the increased QoS requirement has sparked keen interest in network planning and optimization. As the major players in wireless network optimization, the BS's resource utilization and mobile user's QoS can be improved a lot by the load-balancing technology. In this paper, we propose a load-balancing strategy that uses Coordinated Multiple Points (CoMP) technology among the Base Stations (BS) to effectively extend network coverage and increase edge users signal quality. To use universally, different patterns of load-balancing based on CoMP are modeled and discussed. We define two QoS metrics to be guaranteed during CoMP load balancing: call blocking rate and efficient throughput. The closed-form expressions for these two QoS metrics are derived. The load-balancing capacity and QoS performances with different CoMP patterns are evaluated and analyzed in low-dense and high-dense traffic system. The numerical results present the reasonable CoMP load balancing pattern choice with guaranteed QoS in each system.

Uncertainty Characteristics in Future Prediction of Agrometeorological Indicators using a Climatic Water Budget Approach (기후학적 물수지를 적용한 기후변화에 따른 농업기상지표 변동예측의 불확실성)

  • Nam, Won-Ho;Hong, Eun-Mi;Choi, Jin-Yong;Cho, Jaepil;Hayes, Michael J.
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.57 no.2
    • /
    • pp.1-13
    • /
    • 2015
  • The Coupled Model Intercomparison Project Phase 5 (CMIP5), coordinated by the World Climate Research Programme in support of the Intergovernmental Panel on Climate Change (IPCC) AR5, is the most recent, provides projections of future climate change using various global climate models under four major greenhouse gas emission scenarios. There is a wide selection of climate models available to provide projections of future climate change. These provide for a wide range of possible outcomes when trying to inform managers about possible climate changes. Hence, future agrometeorological indicators estimation will be much impacted by which global climate model and climate change scenarios are used. Decision makers are increasingly expected to use climate information, but the uncertainties associated with global climate models pose substantial hurdles for agricultural resources planning. Although it is the most reasonable that quantifying of the future uncertainty using climate change scenarios, preliminary analysis using reasonable factors for selecting a subset for decision making are needed. In order to narrow the projections to a handful of models that could be used in a climate change impact study, we could provide effective information for selecting climate model and scenarios for climate change impact assessment using maximum/minimum temperature, precipitation, reference evapotranspiration, and moisture index of nine Representative Concentration Pathways (RCP) scenarios.

Development of Operating Guidelines of a Multi-reservoir System Using an Artificial Neural Network Model (인공 신경망 모형을 활용한 저수지 군의 연계운영 기준 수립)

  • Na, Mi-Suk;Kim, Jae-Hee;Kim, Sheung-Kown
    • IE interfaces
    • /
    • v.23 no.4
    • /
    • pp.311-318
    • /
    • 2010
  • In the daily multi-reservoir operating problem, monthly storage targets can be used as principal operational guidelines. In this study, we tested the use of a simple back-propagation Artificial Neural Network (ANN) model to derive monthly storage guideline for daily Coordinated Multi-reservoir Operating Model (CoMOM) of the Han-River basin. This approach is based on the belief that the optimum solution of the daily CoMOM has a good performance, and the ANN model trained with the results of daily CoMOM would produce effective monthly operating guidelines. The optimum results of daily CoMOM is used as the training set for the back-propagation ANN model, which is designed to derive monthly reservoir storage targets in the basin. For the input patterns of the ANN model, we adopted the ratios of initial storage of each dam to the storage of Paldang dam, ratios of monthly expected inflow of each dam to the total inflow of the whole basin, ratios of monthly demand at each dam to the total demand of the whole basin, ratio of total storage of the whole basin to the active storage of Paldang dam, and the ratio of total inflow of the whole basin to the active storage of the whole basin. And the output pattern of ANN model is the optimal final storages that are generated by the daily CoMOM. Then, we analyzed the performance of the ANN model by using a real-time simulation procedure for the multi-reservoir system of the Han-river basin, assuming that historical inflows from October 1st, 2004 to June 30th, 2007 (except July, August, September) were occurred. The simulation results showed that by utilizing the monthly storage target provided by the ANN model, we could reduce the spillages, increase hydropower generation, and secure more water at the end of the planning horizon compared to the historical records.

Priority for Developing Emission Factors and Quantitative Assessment in the Forestry Sector (산림부문의 국가온실가스 배출·흡수계수 개발 필요 우선순위 및 정량평가 방법론)

  • Han, Seung Hyun;Lee, Sun Jeoung;Chang, Hanna;Kim, Seongjun;Kim, Raehyun;Jeon, Eui-Chan;Son, Yowhan
    • Journal of Climate Change Research
    • /
    • v.8 no.3
    • /
    • pp.239-245
    • /
    • 2017
  • This study aimed to suggest priority for developing emission factor (EF) and to develop the methodology of quantitative assessment of EF in the forestry sector. Based on the stock-difference method, 17 kinds of EFs (27 EFs based on forest types) were required to calculate the carbon emission in the forestry sector. Priority for developing EFs followed the standards, which is a development plan by the government agency, importance of carbon stock for greenhouse gas, and EFs by the species. Currently, the most urgent development of EFs was carbon fraction in biomass and carbon stock in dead wood. Meanwhile, the quantitative assessment of EF consisted of 7 categories (5 categories of compulsory and 2 categories of quality evaluation) and 12 verification factors. Category in compulsory verification consisted of administrative document, determination methodology of emission factors, emission characteristic, accuracy of measurement and analysis, and data representative. Category in quality evaluation consisted of data management and uncertainty estimates. Based on the importance of factors in the verification process, each factor was scored separately, however, the score needs to be coordinated by the government agency. These results would help build a reliable and accurate greenhouse gas inventory report of Korea.

Nature-based Solutions for Climate-Adaptive Water Management: Conceptual Approaches and Challenges (기후변화대응 물관리를 위한 자연기반해법의 개념적 체계와 정책적 과제)

  • Park, Yujin;Oh, Jeill
    • Journal of Korean Society on Water Environment
    • /
    • v.38 no.4
    • /
    • pp.177-189
    • /
    • 2022
  • Nature-based Solutions (NbS) are defined as practical and technical approaches to restoring functioning ecosystems and biodiversity as a means to address socio-environmental challenges and provide human-nature co-benefits. This study reviews NbS-related literature to identify its key characteristics, techniques, and challenges for its application in climate-adaptive water management. The review finds that NbS has been commonly used as an umbrella term incorporating a wide range of existing ecosystem-based approaches such as low-impact development (LID), best management practices (BMP), forest landscape restoration (FLR), and blue-green infrastructure (BGI), rather than being a uniquely-situated practice. Its technical form and operation can vary significantly depending on the spatial scale (small versus large), objective (mitigation, adaptation, naturalization), and problem (water supply, quality, flooding). Commonly cited techniques include green spaces, permeable surfaces, wetlands, infiltration ponds, and riparian buffers in urban sites, while afforestation, floodplain restoration, and reed beds appear common in non- and less-urban settings. There is a greater lack of operational clarity for large-scale NbS than for small-scale NbS in urban areas. NbS can be a powerful tool that enables an integrated and coordinated action embracing not only water management, but also microclimate moderation, ecosystem conservation, and emissions reduction. This study points out the importance of developing decision-making guidelines that can inform practitioners of the selection, operation, and evaluation of NbS for specific sites. The absence of this framework is one of the obstacles to mainstreaming NbS for water management. More case studies are needed for empirical assessment of NbS.