• Title/Summary/Keyword: Coordinate measurement

Search Result 384, Processing Time 0.027 seconds

Measurement Uncertainty Analysis of Performance Test for Coordinate Measuring Machine (3차원 좌표 측정기 성능 시험법에 대한 측정 불확도 해석)

  • Lee, Seung-Pyo;Kang, Hyung-Joo;Ha, Sung-Kyu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.4
    • /
    • pp.91-99
    • /
    • 2009
  • Because of both precise measurement and efficient quality control, coordinate measuring machines(CMMs) have been widely used in the industry. The purpose of this paper is to present a method to estimate the CMM measurement uncertainty using design of experiments. A factorial design is applied to carry out the performance test proposed by ISO 10360 and to investigate CMM measurement errors associated to orientation and length of the length bar. In order to assess the measurement uncertainty for the performance test, an analysis of the uncertainty components that make up the uncertainty budget has been carried out. The procedure for evaluating the uncertainty of it follows GUM ("Guide to the expression of uncertainty in measurement"). The results show that the proposed method is suitable to investigate CMM performance and determine the contribution of machine variables to measurement uncertainty.

Calibration of Optical Dimensional Measurement System Using Optical Microscope (광학현미경을 이용한 비접촉식 치수측정시스템의 교정)

  • Park, Hyun-Goo;Park, Min-Cheol;Kim, Seung-Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.11
    • /
    • pp.118-125
    • /
    • 1997
  • Non-contacting optical microscopes are increasingly used in recent industrial applications of probes for coordinate measuring machines. They have been found more efficient than conventional touch trigger porbes with ball tips especially in inspecting small-sized objects. There are two major factors affecting measuring accuracy: (1) geometric relations between coordinate systems, (2) magnification ratios of a microscope. In order to determine the magnification ratios exactly, optical imaging of edge was theroretically analyzed and practically adopted to image processing for edge detection. In addition, this paper proposes a geometric calibration method to obtain exact coordinates of measured points from the relations between the machine coordinate system and the image. In the method, the error according to the squareness between the machine axises was also removed. The method was practically adopted to a real coordinate measuring machine. An ultraprecision measurement of 0.2 um uncertainty can be practically achieved.

  • PDF

The Development of Camera Detection System for the Measurement Road Traffic Data (영상검지 카메라를 이용한 도로상의 차량흐름 계측방안 연구)

  • Kim, Hie-Sik;Kim, Jin-Man
    • Journal of the Korean Society of Safety
    • /
    • v.18 no.4
    • /
    • pp.23-27
    • /
    • 2003
  • To improve the road transportation safety, the road traffic data is monitored by applying an image detection system. The road traffic safety is analysed using image processing techniques. For more accurate measurement, the coordinate matching of real road data to image is one of the most essential parts of the image detection technique. The road image is skewed at the input screen, because the video camera is installed at the roadside. A fast and precise algorithm for the coordinate matching is developed to convert image coordinates into road coordinates.

Precision Evaluation Method for the Positioning Error of Three-DOF Parallel Mechanism using Coordinate Measuring Machine (CMM) (CMM을 이용한 3자유도 병렬기구 위치 오차의 정밀 평가 기법)

  • 권기환;박재준;이일규;조남규;양현익
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.11
    • /
    • pp.99-109
    • /
    • 2004
  • This paper proposes precision evaluation method for the positioning error of three-DOF translational parallel mechanism. The proposed method uses conventional CMM as metrology equipment to measure the position of end-effector. In order to obtain accurate measurement data from CMM, the transform relationship between the coordinate system of the parallel mechanism and the CMM coordinate system must be identified. For this purpose, a new coordinate referencing (or coordinate system identification) technique is presented. By using this technique accurate coordinate transformation relationships are efficiently established. According to these coordinate transformation relationships, an equation to calculate error components at any arbitrary position of the end-effector is derived. In addition, mathematical fitting models to represent the position error components in the two-dimensional workspace of the parallel mechanism are also constructed based on response surface methodology. The proposed error evaluation method proves its effectiveness through the experimental results and its application to real three-DOF parallel mechanism.

Development of the system for error evaluation in coordinate measuring machines (3차원 좌표 특정기의 오차 평가 시스템 개발)

  • ;M.Burdekin;G.Peggs
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1991.11a
    • /
    • pp.116-120
    • /
    • 1991
  • Technique of length measurement error is widely used in the accuracy assessment of CMMS(Coordinate measuring machines) and machine tools, as it is simple and direct measurement within the working volume of a machine. In this paper, a new method is proposed for the evaluation of the length measurement error in relation to the volumetric accuracy. lD, 2D, and 3D measuring lines are considered for recpective length measurement error: 1D, 2D, and 3D length measurement uncertainties are evaluated from volumetric accuracy. The relationship between the volumetric accuracy md length measurement error to is discussed. PC based system for length measurement error evaluation and simulation is developed.

  • PDF

A Study on Measurement Uncertainty of CMM used for Inspection of Precision Machined parts. (정밀가공 부품 검사에 사용되는 삼차원측정기의 측정불확도 연구)

  • 이갑조;오상록;김종관
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.3-9
    • /
    • 2004
  • The machining parts must be produced within the specification of drawing and those will be able to meet function and efficiency. At that time. it is necessary not only precision machine or machining technique but also the measurement technique is very important. So. the improvement of precise measurement technique is to be joined together at once with improvement of product technique. Finally. he quality and value of the parts are decided by precision measurement. This paper aims to study on he measurement uncertainty when the machined parts are inspected with 3-dimensional coordinate measuring machine. The objectives are to remove an error of measurement and to improve quality and productivity of the mass products.

  • PDF

A Study on Measurement Uncertainty of 3-dimensional Coordinate Measuring Machine used for Inspection of Precision Machined parts (정밀가공 부품 검사에 사용되는 3차원측정기의 측정불확도 연구)

  • Lee Gab Jo;Oh Sang Lok;Kim Jong Kwan
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.14 no.2
    • /
    • pp.55-61
    • /
    • 2005
  • The machining Parts must be Produced within the specification of drawing and those will be able to meet faction and efficiency. At that time, it is very important not only precision machine and machining technique but also the measurement technique. So, the improvement of measurement technique is to be joined together at once with improvement of machining technique. Finally, the quality and value of the parts are decided by precision measurement. This paper aims to study on the measurement uncertainty when the machined parts are inspected with 3-dimensional coordinate measuring machine. The objectives remove an error of measurement and remove a quality of mass products.

The Use of Advanced Optical Measurement Methods for the Mechanical Analysis of Shear Deficient Prestressed Concrete Members

  • Wilder, K. De;Roeck, G. De;Vandewalle, L.
    • International Journal of Concrete Structures and Materials
    • /
    • v.10 no.2
    • /
    • pp.189-203
    • /
    • 2016
  • This paper investigates on the use of advanced optical measurement methods, i.e. 3D coordinate measurement machines (3D CMM) and stereo-vision digital image correlation (3D DIC), for the mechanical analysis of shear deficient prestressed concrete members. Firstly, the experimental program is elaborated. Secondly, the working principle, experimental setup and corresponding accuracy and precision of the considered optical measurement techniques are reported. A novel way to apply synthesised strain sensor patterns for DIC is introduced. Thirdly, the experimental results are reported and an analysis is made of the structural behaviour based on the gathered experimental data. Both techniques yielded useful and complete data in comparison to traditional mechanical measurement techniques and allowed for the assessment of the mechanical behaviour of the reported test specimens. The identified structural behaviour presented in this paper can be used to optimize design procedure for shear-critical structural concrete members.

Case Study of Coordinate Measurement during Construction of Long-Span Irregular Curved Roof Layers (장경간 비정형 곡면 지붕층의 시공중 좌표 계측 사례 연구)

  • Shim, Hak-Bo;Seok, Won-Kyun;Park, Soon-Jeon
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.11a
    • /
    • pp.14-15
    • /
    • 2019
  • In this paper, it was tried to prove the possibility and effect of coordinate measurement by using MEP layout equipment at the construction stage, and to propose a method to improve measurement accuracy during construction. For this study, the passenger terminal site, which is a long span structure, was selected and compared with three dimensional CAD drawings and construction measurement results using MEP layout equipment for the precise construction of long-span irregular curved roof layers. As a result, it was found that it is possible to construct three-dimensional curved roof layers using MEP layout equipment through measurement and analysis.

  • PDF

Industrial Measuring System (IMS) and its Software Structure (Industrial Measuring System(IMS)과 그 소프트웨어의 구조)

  • Kim, Byung Guk
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.12 no.4
    • /
    • pp.157-165
    • /
    • 1992
  • IMS, a precision coordinate measuring system using theodolites, is being used to survey and align precision mechanical structures. Compared to conventional mechanical devices for precision measurement, such as CMM (Coordinate Measuring Machine), the target objects of IMS have little limitations in their sizes and shapes, and can be measured in place. Also since IMS displays the coordinate values in real-time, it is possible to perform measurement and alignment of the objects simultaneously. In this paper, the elements and functions of IMS are introduced and a mathematical model of the new software, which utilizes an altered version of the 'Bundle' adjustment algorithm of analytical photogrammetry for the specific use of IMS, is demonstrated. Differences of the mathematical model of IMS from that of analytical photogrammetry are discussed by following the steps of the 'Measurement' option in the 'Main Menu' of the software. A new IMS calibration method is proposed to calculate better first approximations for the 4 unknown theodolite parameters and the coordinates of target objects. The software provides the 'Bundle' procedure for the first approximations of the unknowns before the real-time measurement. It also provides an opportunity of 'bundling' to re-adjust the collected positional data at the end of the measurement.

  • PDF