• Title/Summary/Keyword: Coolstore

Search Result 2, Processing Time 0.017 seconds

THE EFFECT OF COOLSTORE DESIGN AND OPERATION ON AIR RELATIVE HUMIDITY

  • Amos, N.D.;Cleland, D.J.;Cleland, A.C.;Banks, N.H.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1993.10a
    • /
    • pp.433-442
    • /
    • 1993
  • Coolstore air relative humidity (RH) is an important factor affecting the quality of horticultural products, particularly via product moisture loss. RH also has an important effect on the performance of the refrigeration evaporators and can affect the strength of paper-based packaging materials. In a large New Zealand apple coolstore, RH increased from about 75% early in season to 90% at the end, as activities in the coolstore and external conditions changed. A steady-state analysis of sensible and latent heat entry and heat removal during four typical operational periods over the season was carried out. Predicted RH was in good agreement with measured dat. For the coolstore studied, evaporator surface area and the occurrence of pre-cooling within the coolstore were the design and operational factors having greatest effect on RH. Door protection and management, and floor insulation were the next more significant factors. The method of analysis has more general application and ould be used in a variety of situations so that design for optimum RH can be performed systematically.

  • PDF

Trends and Interpretation of Life Cycle Assessment (LCA) for Carbon Footprinting of Fruit Products: Focused on Kiwifruits in Gyeongnam Region (과수의 탄소발자국 표지를 위한 LCA 동향 및 해석: 경남지역 참다래를 중심으로)

  • Deurer, Markus;Clothier, Brent;Huh, Keun-Young;Jun, Gee-Ill;Kim, In-Hea;Kim, Dae-Il
    • Horticultural Science & Technology
    • /
    • v.29 no.5
    • /
    • pp.389-406
    • /
    • 2011
  • As part of a feasibility study for introducing carbon labeling of fruit products in Korea, we explore the use of carbon footprints for Korean kiwifruit from Gyeongnam region as a case study. In Korea, the Korean Environmental Industry and Technology Institute (KEITI) is responsible for the carbon footprint labeling certification, and has two types of certification programs: one program focuses on climate change response (carbon footprint labeling analysis) and the other on low-carbon products (reduction of carbon footprints analysis). Currently agricultural products have not yet been included in the program. Carbon labeling could soon be a prerequisite for the international trading of agricultural products. In general the carbon footprints of various agricultural products from New Zealand followed the methodology described in the ISO standards and conformed to the PAS 2050. The carbon footprint assessment focuses on a supply chain, and considers the foreground and the background systems. The basic scheme consists of four phases, which are the 'goal', 'scope', 'inventory analysis', and 'interpretation' phases. In the case of the carbon footprint of New Zealand kiwifruit the study tried to understand each phase's contribution to total GHG emissions. According to the results, shipping, orchard, and coolstore operation are the main life cycle stages that contribute to the carbon footprint of the kiwifruit supply chain stretching from the orchard in New Zealand to the consumer in the UK. The carbon emission of long-distance transportation such as shipping can be a hot-spot of GHG emissions, but can be balanced out by minimizing the carbon footprint of other life cycle phases. For this reason it is important that orchard and coolstore operations reduce the GHG-intensive inputs such as fuel or electricity to minimize GHG emissions and consequently facilitate the industry to compete in international markets. The carbon footprint labeling guided by international standards should be introduced for fruit products in Korea as soon as possible. The already established LCA methodology of NZ kiwifruit can be applied for fruit products as a case study.