• Title/Summary/Keyword: Cooling water temperature

Search Result 1,159, Processing Time 0.024 seconds

Temperature analysis of extra vessel electromagnetic pump cooling for a Micro nuclear reactor with an electric power of 20 MW

  • Tae Uk Kang;Hee Reyoung Kim
    • Nuclear Engineering and Technology
    • /
    • v.56 no.1
    • /
    • pp.275-282
    • /
    • 2024
  • Lead bismuth eutectic (LBE) is used as coolant for MicroURANUS, a small marine nuclear power plant, and this coolant is transported in the plant by an electromagnetic pump. Given the considerable heat generated by the electromagnetic pump, the cooling of the pump is essential. This study compared air cooling and water-cooling methods and found that the maximum temperatures during air and water cooling were 640 K and 372 K, respectively. These findings were utilized to design an electromagnetic pump with water-cooling. The maximum temperature of the pump was lower than the boiling point of water; thus, the pump did not require a separate pressurization. Consequently, the resistance problem of the coil and the deformation problem of the material caused by generated heat can be solved through water-cooling.

A Study on the Cooling Characteristics Improvement of TMA-Water Clathrate Compound by Ethanol (에탄올에 의한 TMA-포접화합물의 냉각특성 개선에 대한 연구)

  • Lee, Jong-In;Kim, Chang-Oh
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.1
    • /
    • pp.23-28
    • /
    • 2007
  • This study aims to find out cooling characteristics of TMA(Tri-Methyl-Amine, $(CH_3)_3N$) 25wt%-water clathrate compound with ethanol($CH_3CH_2OH$) such as supercooling, phase change temperature and specific heat. For this purpose, ethanol is added as per weight concentration and cooling experiment is performed at $-6{\sim}-8^{\circ}C$, cooling heat source temperature, and it leads the following result. (1) Phase change temperature is decreased due to freezing point depression phenomenon. Especially, it is minimized as $3.8^{\circ}C$ according to cooling source temperature in case that 0.5wt% of ethanol is added. (2) If 0.5wt% of ethanol is added, average supercooling degree is $0.9^{\circ}C$ and minimum supercooling is 0.8, $0.7^{\circ}C$ according to cooling heat source temperature. The restraint effect of supercooling is shown. (3) Specific heat shows tendency to decrease if ethanol is added. It is $3.013{\sim}3.048\;kcal/kg^{\circ}C$ according to cooling heat source temperature if 0.5wt% of ethanol is added. Phase change temperature higher than that of water and inhibitory effect against supercooling can be confirmed through experimental study on cooling characteristics of TMA 25wt%-water clathrate compound by adding additive, ethanol. This can lead to shorten refrigerator operation time of low temperature latent heat storage system and improve COP of refrigerator and efficiency of overall system. Therefore energy can be saved and efficiency can be improved much more.

An Experimental Study on the Temperature Distribution in IRWST

  • Kim, Sang-Nyung
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.5
    • /
    • pp.820-829
    • /
    • 2004
  • The In-Containment Refueling Water Storage Tank (IRWST), one of the design improvements applied to the APR -1400, has a function to condense the high enthalpy fluid discharged from the Reactor Coolant System (RCS). The condensation of discharged fluid by the tank water drives the tank temperature high and causes oscillatory condensation. Also if the tank cooling water temperature approaches the saturated state, the steam bubble may escape from the water uncondensed. These oscillatory condensation and bubble escape would burden the undue load to the tank structure, pressurize the tank, and degrade its intended function. For these reasons simple analytical modeling and experimental works were performed in order to predict exact tank temperature distribution and to find the effective cooling method to keep the tank temperature below the bubble escape limit (93.3$^{\circ}C$), which was experimentally proven by other researchers. Both the analytical model and experimental results show that the temperature distributions are horizontally stratified. Particularly, the hot liquid produced by the condensation around the sparger holes goes up straight like a thermal plume. Also, the momentum of the discharged fluid is not so strong to interrupt this horizontal thermal stratification significantly. Therefore the layout and shape of sparger is not so important as long as the location of the sparger hole is sufficiently close to the bottom of the tank. Finally, for the effective tank cooling it is recommended that the locations of the discharge and intake lines of the cooling system be cautiously selected considering the temperature distribution, the water level change, and the cooling effectiveness.

Effect of Austenitizing Temperature and Cooling Rate on Microstructure and Hardness of Low-carbon SCM415 Steel (오스테나이타이징 온도와 냉각 속도가 SCM415 저탄소강의 미세조직과 경도에 미치는 영향)

  • Lee, J.U.;Lee, G.M.;Cha, J.W.;Park, S.H.
    • Transactions of Materials Processing
    • /
    • v.31 no.4
    • /
    • pp.207-213
    • /
    • 2022
  • In this study, variations in the microstructure and hardness of a low-carbon SCM415 steel with austenitizing temperature and cooling rate are investigated. When the austenitizing temperature is lower than the A1 temperature (738.8 ℃) of the SCM415 steel, the microstructures of both the air-cooled and water-cooled specimens consist of ferrite and pearlite, which are similar to the microstructure of the initial specimen. When heat treatment is conducted at temperatures ranging from the A1 temperature to the A3 temperature (822.4 ℃), the microstructure of the specimen changes depending on the temperature and cooling rate. The specimens air- and water-cooled from 750 ℃ consist of ferrite and pearlite, whereas the specimen water-cooled from 800 ℃ consists of ferrite and martensite. At a temperature higher than the A3 temperature, the air-cooled specimens consist of ferrite and pearlite, whereas the water-cooled specimens consist of martensite. At 650 ℃ and 700 ℃, which are lower than the A1 temperature, the hardness decreases irrespective of the cooling rate due to the ferrite coarsening and pearlite spheroidization. At 750 ℃ or higher, the air-cooled specimens have smaller grain sizes than the initial specimen, but they have lower hardness than the initial specimen owing to the increased interlamellar spacing of pearlite. At 800 ℃ or higher, martensitic transformation occurs during water cooling, which results in a significant increase in hardness. The specimens water-cooled from 850 ℃ and 950 ℃ have a complete martensite structure, and the specimen water-cooled from 850 ℃ has a higher hardness than that water-cooled from 950 ℃ because of the smaller size of prior austenite grains.

An Experimental Study on Water Absorbtion Characteristics of Generator Stator Bar Insulation by Cooling Water Temperature in 500MW Capacity Power Plant (500MW급 화력 발전기 냉각수 온도에 따른 고정자 권선 절연재의 흡습 특성에 관한 실험적 연구)

  • Bae, Yong-Chae;Kim, Hee-Soo;Lee, Doo-Young;Lee, Wook-Ryun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.8
    • /
    • pp.1392-1397
    • /
    • 2008
  • The mechanical integrity of generator stator windings is one of the critical point because the electric power is generated and conducted to power system through these windings. De-mineralized water is used to cool stator bars during the normal operation of generator in large power plants because the water cooled method has highest cooling efficient. Water absorption of bar insulation is progressed by several causes such as generation of water leak path by corrosion, delamination of insulation by vibration, and inadequate water treatment, etc.. Reliable water absorption diagnostics of generator stator bar is important to ensure the availability of power plant and to reduce maintenance cost by generator accident. It is described that the water absorption characteristics for generator stator bar insulation used in 500MW capacity standard fossil power plant by cooling water temperature. It is verified that the management of stator cooling water temperature is one of the important factors to decrease water absorption rate of generator stator bars.

Effect of Water Temperature on Heat Transfer Characteristic of Spray Cooling on Hot Steel Plate (냉각수온 효과에 따른 고온 강판의 스프레이 냉각 열전달 특성 연구)

  • Lee, Jung-Ho;Yu, Cheong-Hwan;Park, Sang-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.5
    • /
    • pp.503-511
    • /
    • 2011
  • Water spray cooling is a significant technology for cooling of materials from high-temperature up to $900^{\circ}C$. The effects of cooling water temperature on spray cooling are mainly provided for hot steel plate cooling applications in this study. The heat flux measurements are introduced by a novel experimental technique that has a function of heat flux gauge in which test block assemblies are used to measure the heat flux distribution on the surface. The spray is produced by a fullcone nozzle and experiments are performed at fixed water impact density of G and fixed nozzle-totarget spacing. The results show that effects of water temperature on forced boiling heat transfer characteristics are presented for five different water temperatures between 5 to $45^{\circ}C$. The local heat flux curves and heat transfer coefficients are also provided to a benchmark data for the actual spray cooling of hot steel plate cooling applications.

Developing Liquid Cooling Garments to Alleviate Heat Strain of Workers in Summer and Exploring Effective Cooling Temperature and Body Regions (여름철 작업자들의 고체온증 예방을 위한 액체냉각복 개발 및 효과적인 냉각온도와 인체 냉각부위 탐색)

  • Jung, Jae-Yeon;Kang, Juho;Seol, Seonhong;Lee, Joo-Young
    • Fashion & Textile Research Journal
    • /
    • v.22 no.2
    • /
    • pp.250-260
    • /
    • 2020
  • The purpose of the present study was to explore the most effective body region and cooling temperature to alleviate heat strain of workers in hot environments. We developed liquid cooling hood, vest, sleeves and socks and applied the water temperatures of 10, 15, 20, and 25℃ through the liquid cooling garments in a hot and humid environment (33℃ air temperature and 70% RH air humidity). A healthy young male participated in a total of 16 experimental trials (four cooling garments × four cooling temperatures) with the following protocol: 10-min rest, 40-min exercise on a treadmill and 10-min recovery. The results showed that rectal temperature, mean skin temperature, and ratings of perceived exertion during exercise; heart rate and diastolic blood pressure during recovery; and total sweat rate were lower for the vest condition than other garment conditions(p < .05). However, there was no differences in mean skin temperature among the four cooling garments when we compared the values converted by covering area(%BSA). When we classified the results by cooling temperature, there were no consistent differences in thermoregulatory and cardiovascular responses among the four temperatures, but 25℃ water temperature was evaluated as being the most ineffective cooling temperature in terms of subjective responses. In conclusion, the results indicated that wearing cooling vest with < 20℃ cooling temperature can alleviate heat strain of workers in hot and humid environments. If the peripheral body regions are cooled with liquid cooling garments, larger cooling area with lower cooling temperature than 10℃ would be effective to reduce heat strain of workers. Further studies with a vaild number of subjects are required.

Improvement of Cooling Water Quality by Corrosion and Scale Inhibitor (부식 및 스케일 억제제에 의한 냉각수 수질향상)

  • Jo, Kwan-Hyung;Woo, Dal-Sik;Hwang, Byung-Gi
    • Journal of Environmental Science International
    • /
    • v.18 no.2
    • /
    • pp.187-195
    • /
    • 2009
  • This study was investigated to control the corrosion and scale at the cooling water system in steel works. Laboratory and field tests were performed for the indirect cooling water system of plate mill. Throughout the experiment, various factors such as leakage of pipes, heating rate and capacity, and the reaction between existing and substitute inhibitors were carefully monitored. The results showed that the harmful effect of high temperature could be minimized, and satisfactory corrosion/scale controls were effectively achieved using inhibitor, even at the increased temperature of $80^{\circ}C$. The batch and field tests in the gas scrubbing cooling water system of blast furnace and cooling water system of corex plant indicated that the new inhibitor was more effective for the prevention of corrosion and scale than the existing one.

Water-Cooling System of HVDC System (HVDC 시스템의 수냉식 냉각 시스템)

  • 김찬기
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.4 no.3
    • /
    • pp.257-267
    • /
    • 1999
  • This paper deals with the water cooling system of HVDC(High Voltage Direct CUlTentJ. It is generally accepted that water is a veη effective medium to remove heat losses from any type of equipment. Because of this benefits the water cooling method is used in HVDC. The water cooling system consists of a heat exchanger, circulation pump and a connecting pipe. According to thYI1stor temperature level. thyristor junction temperature is controlled by controlling the f fan of exchanger. In this paper. the water cooling system of HVDC system is analyzed and estimated.

  • PDF

A Study on Cooling Characteristics of Ground Source Heat Pump with Variation of Water Switching and Refrigerant Switching Methods (수절환 및 냉매절환방식에 따른 지열히트펌프의 냉방특성에 관한 연구)

  • Cha, Dong-An;Kwon, Oh-Kyung;Park, Cha-Sik
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.8
    • /
    • pp.605-611
    • /
    • 2012
  • The objective of this study is to investigate the influence of the cooling performance for a water-to-water 10 RT ground source heat pump by using the water switching and refrigerant switching method. The test of water-to-water ground source heat pump was measured by varying the compressor speed, load side inlet temperature, and ground heat source side temperature. The cooling capacity and refrigerant mass flow rate of the heat pump increased with increasing ground heat source temperature. But COP of the heat pump decreased with increasing ground heat source temperature. As a result, the water switching method with counter flow, compared to a refrigerant switching method, improves the cooling capacity and COP by approximately 6~9% in average, respectively.