• Title/Summary/Keyword: Cooling tank

Search Result 224, Processing Time 0.027 seconds

Demonstration study on Heating and Hot water According to Control Condition of Solar System (태양열 시스템의 제어조건에 따른 난방 및 급탕 실증연구)

  • Kwak, Hee-Youl;Kim, Jeong-Bae;Joo, Hong-Jin;Kim, Jong-Bo
    • Journal of the Korean Solar Energy Society
    • /
    • v.26 no.4
    • /
    • pp.119-126
    • /
    • 2006
  • This study describes thermal performance of heating and cooling demonstration system using ETSC(Evacuated tubular solar collector) installed at Seo-gu art center of Kwangju. For demonstration study, a reading room with about $350m^2$ was heated and cooled using that system. The demonstration system was consisted of ETSCs, storage tank, hot water supply tank, subsidiary boiler, and subsidiary tank. From January to March in 2006, demonstration test were performed with 4 control mode to find the optimum control condition for solar thermal system. After experiments and analysis, this study found that solar thermal system of control mode IV was corresponded to 78% for the hot water supply and 49% for space heating.

Theoretical Study on the Flow of Refilling Stage in a Safety Injection Tank (안전주입탱크의 재충수 단계 유동에 대한 이론해석)

  • Park, Jun Sang
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.10
    • /
    • pp.675-683
    • /
    • 2017
  • In this study, a theoretical analysis was performed to the flow of refilling stage in a safety injection tank, which is the core cooling system of nuclear power plant in an emergency. A theoretical model was proposed with a nonlinear governing equation defining on the flow of the refilling process of the coolant. Utilizing the Taylor-series expansion, the $1^{st}$ - order approximation flow equation was obtained, along with its analytic solution of closed type, which could predict accurately the variations of free surface height and flow rate of the coolant. The availability of theoretical result was confirmed by comparing with previous experimental results.

DEVELOPMENT OF AN OPERATION STRATEGY FOR A HYBRID SAFETY INJECTION TANK WITH AN ACTIVE SYSTEM

  • JEON, IN SEOP;KANG, HYUN GOOK
    • Nuclear Engineering and Technology
    • /
    • v.47 no.4
    • /
    • pp.443-453
    • /
    • 2015
  • A hybrid safety injection tank (H-SIT) can enhance the capability of an advanced power reactor plus (APR+) during a station black out (SBO) that is accompanied by a severe accident. It may a useful alternative to an electric motor. The operations strategy of the H-SIT has to be investigated to achieve maximum utilization of its function. In this study, the master logic diagram (i.e., an analysis for identifying the differences between an H-SIT and a safety injection pump) and an accident case classification were used to determine the parameters of the H-SIT operation. The conditions that require the use of an H-SIT were determined using a decision-making process. The proper timing for using an H-SIT was also analyzed by using the Multi-dimensional Analysis of Reactor Safety (MARS) 1.3 code (Korea Atomic Energy Research Institute, Daejeon, South Korea). The operation strategy analysis indicates that a H-SIT can mitigate five types of failure: (1) failure of the safety injection pump, (2) failure of the passive auxiliary feedwater system, (3) failure of the depressurization system, (4) failure of the shutdown cooling pump (SCP), and (5) failure of the recirculation system. The results of the MARS code demonstrate that the time allowed for recovery can be extended when using an H-SIT, compared with the same situation in which an H-SIT is not used. Based on the results, the use of an H-SIT is recommended, especially after the pilot-operated safety relief valve (POSRV) is opened.

A Study on Field test of the Horizontal Ground Source Heat Pump for Greenhouse (시설원예용 수평형 지열히트펌프 시스템 실증연구)

  • Park, Yong-Jung;Kang, Shin-Hyung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.505-510
    • /
    • 2007
  • Greenhouses should be heated during nights and co Id days in order to fit growth conditions in greenhouses. Ground source heat pump(GSHP) or geothermal heat pump system(GHPs) is recognized to be outstanding heating and cooling system. Horizontal GSHP system is typically less expensive than vertical GSHP system but requires wide ground area to bury ground heat exchanger (GHE). In this study, a horizontal GSHP system with thermal storage tank was installed in greenhouse and investigated as performance characteristics. In the daytime, heating load of greenhouse is very small or needless because solar radiation increases inner air temperature. The results of study showed that the heating coefficient of performance of the heat pump($COP_h$) was 2.9 and the overall heating coefficient of performance of the system($COP_{sys}$) was 2.4. Heating energy cost was saved 76% using the horizontal GSHP system with thermal storage tank.

  • PDF

The Improvement of the Performance of Solar Cooling and Heating Systems (II) - The Characteristics of an Absorption Refrigeration Powered by Solar Systems - (태양열에 의한 냉방 및 난방시스템의 성능향상(II) - 태양열을 이용한 흡수식 냉동기의 성능 -)

  • Park, M.S.;Kim, M.G.;Kim, H.K.;Ro, S.T.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.1 no.1
    • /
    • pp.46-54
    • /
    • 1989
  • The purpose of this study is to obtain the dynamic characteristics of an absorption refrigerator powered by solar energy by experiments. Since the absorption refrigerator power by solar energy should have the characteristics which is suitable for the intermittence and rarity of solar energy, not only the characteristics of the steady state operations but also the partial load and the transient operations should be considered. The minimum available temperature of the storage tank should be known, and the absorption refrigerator can be suitably selected for air-conditioning systems. In this study, the experimental data of the transient state for on-off and warming-up operations has been obtained. Also the experiments are performed which test the minimum available temperature of the storage tank. The results show that it takes 1 hour to get to the steady state of the absorption refrigerator, and the minimum available temperature of the storage tank is about $68^{\circ}C$, and show that in the partial load operations the performance of the absorption refrigerator is improved by applying the modified control method to on-off operations.

  • PDF

Performance Analysis of the Horizontal Ground Source Heat Pump for Greenhouse (시설원예용 수평형 지열 히트펌프 시스템의 성능분석)

  • Park, Yong-Jung;Kang, Shin-Hyung
    • Proceedings of the SAREK Conference
    • /
    • 2007.11a
    • /
    • pp.447-452
    • /
    • 2007
  • Greenhouses should be heated during nights and cold days in order to fit growth conditions in greenhouses. Ground source heat pump(GSHP) or geothermal heat pump system(GHPs) is recognized to be outstanding heating and cooling system. Horizontal GSHP system is typically less expensive than vertical GSHP system but requires wide ground area to bury ground heat exchanger(GHE). In this study, a horizontal GSHP system with thermal storage tank was installed in greenhouse and investigated as performance characteristics. In the daytime, heating load of greenhouse is very small or needless because solar radiation increases inner air temperature. The results of study showed that the heating coefficient of performance of the heat pump ($COP_h$) was 2.9 and the overall heating coefficient of performance of the system($COP_{sys}$) was 2.4. Heating energy cost was saved 76% using the horizontal GSHP system with thermal storage tank.

  • PDF

A Study on the Annual Storage Efficiency of Concentric Evacuated Tube Solar Energy Collector System (이중진공관형 태양열 집열기의 연간 집열효율에 관한 연구)

  • Kim, Ki-Chul;Paeng, Jin-Gi;Yoon, Young-Hwan
    • Journal of the Korean Solar Energy Society
    • /
    • v.28 no.4
    • /
    • pp.50-55
    • /
    • 2008
  • The Storage efficiency of concentric evacuated tube solar collector is tested for one year from January 1st to December 31st under the real sun condition. The testing equipment is operated continuously for three days without cooling the storage tank. Daily storage efficiency is obtained from dividing stored energy in the storage tank by solar insolation on the solar collector for each day. Daily averaged temperature of the storage tank is lowest in January and highest in August. Monthly averaged storage efficiency is also lowest in November and highest in June. Therefore, it can be said that the storage temperature and the storage efficiency are roughly proportional to outdoor temperature. Furthermore, the daily storage efficiency is reversely proportional to $(T_s-T_a)/I_c$ where $T_s$ and $T_a$ are daily averaged storage temperature and outdoor temperature from sunrise to sunset, and $I_c$ is total insolation on the solar collector for a day.

Demonstration study on Heating and Hot water According to Control Condition of Solar System (태양열 시스템의 제어조건에 따른 난방 및 급탕 실증연구)

  • Joo, Hong-Jin;Kwak, Hee-Youl;Kim, Jeong-Bae;Kim, Jong-Bo
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.832-837
    • /
    • 2006
  • This study describes thermal performance of heating and cooling demonstration system using ETSC(Evacuated tubular solar collector) installed at Seo-gu art center of Kwangju. For demonstration study, a reading room with about $331m^2$ was heated and cooled using that system. The demonstration system was consisted of ETSCs, storage tank, hot water supply tank, subsidiary boiler, and subsidiary tank. From January to March in 2006, demonstration test were performed with 4 control mode to find the optimum control condition for solar thermal system. After experiments and analysis, this study found that solar thermal system of control mode IV was corresponded to 78% for the hot water supply and 49% for space heating.

  • PDF

THE DESIGN FEATURES OF THE ADVANCED POWER REACTOR 1400

  • Lee, Sang-Seob;Kim, Sung-Hwan;Suh, Kune-Yull
    • Nuclear Engineering and Technology
    • /
    • v.41 no.8
    • /
    • pp.995-1004
    • /
    • 2009
  • The Advanced Power Reactor 1400 (APR1400) is an evolutionary advanced light water reactor (ALWR) based on the Optimized Power Reactor 1000 (OPR1000), which is in operation in Korea. The APR1400 incorporates a variety of engineering improvements and operational experience to enhance safety, economics, and reliability. The advanced design features and improvements of the APR1400 design include a pilot operated safety relief valve (POSRV), a four-train safety injection system with direct vessel injection (DVI), a fluidic device (FD) in the safety injection tank, an in-containment refueling water storage tank (IRWST), an external reactor vessel cooling system, and an integrated head assembly (IHA). Development of the APR1400 started in 1992 and continued for ten years. The APR1400 design received design certification from the Korean nuclear regulatory body in May of2002. Currently, two construction projects for the APR1400 are in progress in Korea.

A Study on the Flow Characteristics of Fluidic Valve (Fluidic Valve의 유동 특성에 관한 연구)

  • Yoo, Seong-Yeon;Jie, Myoung-Seok;Kim, Ki-Hyung;Kim, Man-Woong
    • 유체기계공업학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.425-432
    • /
    • 2001
  • Fluidic valve is adopted in APR1400 to control passively the flow rate of cooling water from the safety injection tank. It is necessary to establish independent evaluation guideline for the flow characteristics of fluidic valve in order to secure safety. Three dimensional numerical model for fluidic valve is developed and numerical results are compared with experimental data obtained at KAERI in order to verify numerical simulation. Also influence of the grid number and the turbulence model were investigated. In addition, variation of flow rate is investigated at various elapsed times after valve operating, and flow characteristics are analyzed at low and high flow rate conditions, respectively.

  • PDF