• Title/Summary/Keyword: Cooling model and simulation

Search Result 380, Processing Time 0.031 seconds

Analysis of Temperature Gradients in Greenhouse Equipped with Fan and Pad System by CFD Method (CFD 기법을 이용한 팬 앤 패드 냉방 온실의 온도경사 분석)

  • Nam Sang Woon;Giacomelli Gene A.;Kim Kee Sung;Sabeh Nadia
    • Journal of Bio-Environment Control
    • /
    • v.14 no.2
    • /
    • pp.76-82
    • /
    • 2005
  • Evaporative cooling pad system is one of the main cooling methods in greenhouses and its efficiency is very high. However, it has some disadvantages such as greenhouse temperature distributions are not uniform and installation cost is expensive. In this study, a CFD simulation model f3r predicting the air temperature distribution in the fan and fad cooling greenhouse was developed. The model was calibrated and validated against experimental data and a good fit was obtained. The influence of different outside wind, fan and pad height, ventilation rate, shading, and greenhouse length, were then examined. In order to reduce the internal temperature gradients, it is desired that the prevail wind direction and the fan and pad heights are considered. The simulation indicates that high ventilation rates and shading contribute to reduce the temperature gradients in the fan and pad cooling greenhouse. In order to maintain the desired greenhouse temperature, the pad-to-fan distance should be restricted according to the design climate conditions, shading and ventilation rates. The developed CFD model can be a useful tool to evaluate and design the fan and pad systems in the greenhouses with various configurations.

The improvement of genetic algorithm using Boltzmann selection (유전자 알고리즘에서 볼쯔만 선택방법의 개선)

  • 윤기석;김태형;김유신
    • Proceedings of the IEEK Conference
    • /
    • 1999.06a
    • /
    • pp.429-432
    • /
    • 1999
  • In this paper, we propose a method to improve Genetic Algorithm using Boltzmann selection which Michael has suggested. But Michael uses temperature schedule(the initial temperature, the cooling rate), which can be applicable only to the limited range of problems. We propose a new method to find the critical temperature and the cooling rate as parameters of the temperature schedule. The critical temperature can be derived from the distribution of each individual's fitness. Through the application of the island model where each island has differing cooling rate, it is proved that it is unnecessary to find the optimal cooling rate. The simulation on the TSP's with various city sizes proves the proposed critical temperature correct.

  • PDF

CFD Simulation of Airflow and Heat Transfer in the Cold Container (냉장 컨테이너 내부의 공기유동 및 열전달 현상에 대한 CFD 시뮬레이션)

  • Yun, Hong-Sun;Kwon, Jin-Kyung;Jeong, Hoon;Lee, Hyun-Dong;Kim, Young-Geon;Yun, Nam-Kyu
    • Journal of Biosystems Engineering
    • /
    • v.32 no.6
    • /
    • pp.422-429
    • /
    • 2007
  • To prevent deterioration of agricultural products during cold transportation, optimized temperature control is essential. Because the control of temperature and thermal uniformity of transported products are mainly governed by cooling air flow pattern in the transportation equipment, the accurate understanding and removal of appearance of stagnant air zone by poor ventilation is key to design of optimized cooling environment. The objectives of this study were to develop simulation model to predict the airflow and heat transfer phenomena in the cold container and to evaluate the effect of fan blowing velocity on the temperature level and uniformity of products using the CFD approach. Comparison of CFD prediction with PIV measurement showed that RSM turbulent model reveals the more reasonable results than standard $k-{\varepsilon}$ model. The increment of fan blowing velocity improved the temperature uniformity of product and reduced almost linearly the averaged temperature of product.

Influences of Ice Microphysical Processes on Urban Heat Island-Induced Convection and Precipitation (얼음 미시물리 과정이 도시 열섬이 유도하는 대류와 강수에 미치는 영향)

  • Han, Ji-Young;Baik, Jong-Jin
    • Atmosphere
    • /
    • v.17 no.2
    • /
    • pp.195-205
    • /
    • 2007
  • The influences of ice microphysical processes on urban heat island-induced convection and precipitation are numerically investigated using a cloud-resolving model (ARPS). Both warm- and cold-cloud simulations show that the downwind upward motion forced by specified low-level heating, which is regarded as representing an urban heat island, initiates moist convection and results in downwind precipitation. The surface precipitation in the cold-cloud simulation is produced earlier than that in the warm-cloud simulation. The maximum updraft is stronger in the cold-cloud simulation than in the warm-cloud simulation due to the latent heat release by freezing and deposition. The outflow formed in the boundary layer is cooler and propagates faster in the cold-cloud simulation due mainly to the additional cooling by the melting of falling hail particles. The removal of the specified low-level heating after the onset of surface precipitation results in cooler and faster propagating outflow in both the warm- and cold-cloud simulations.

Study on the Performance Prediction Simulation of the Heat Pump System using Solar and Geothermal Heat Source (태양열 및 지열 이용 히트펌프 시스템의 성능예측 시뮬레이션에 관한 연구)

  • Nam, Yu-Jin;Gao, Xin-Yan
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.3
    • /
    • pp.75-81
    • /
    • 2014
  • Recently, the use of renewable energy has been attracted due to the interest in energy-saving and the reduction of CO2 emission. In order to reduce the energy consumption of the cooling and the heating in the field of the architectural engineering, heat pump systems using renewable energy have been developed and used in various applications. In many researches, integrated heat pump systems are suggested which use solar and geothermal heat as the heat source for cooling and heating. However, it is still difficult to predict the performance of the systems, because the characteristic of heat exchange in each system is complicated and various. In this system, the performance prediction simulation of the heat pump was developed using a dynamic simulation model. This paper describes the summary of the suggested systems and the result of the simulation. The average temperature of the heat source, heating loads and COP were calculated with the cases of different local conditions, different system composition and different operation time by TRNSYS 17.

Study of random characteristics of fluctuating wind loads on ultra-large cooling towers in full construction process

  • Ke, S.T.;Xu, L.;Ge, Y.J.
    • Wind and Structures
    • /
    • v.26 no.4
    • /
    • pp.191-204
    • /
    • 2018
  • This article presents a study of the largest-ever (height = 220 m) cooling tower using the large eddy simulation (LES) method. Information about fluid fields around the tower and 3D aerodynamic time history in full construction process were obtained, and the wind pressure distribution along the entire tower predicted by the developed model was compared with standard curves and measured curves to validate the effectiveness of the simulating method. Based on that, average wind pressure distribution and characteristics of fluid fields in the construction process of ultra-large cooling tower were investigated. The characteristics of fluid fields in full construction process and their working principles were investigated based on wind speeds and vorticities under different construction conditions. Then, time domain characteristics of ultra-large cooling towers in full construction process, including fluctuating wind loads, extreme wind loads, lift and drag coefficients, and relationship of measuring points, were studied and fitting formula of extreme wind load as a function of height was developed based on the nonlinear least square method. Additionally, the frequency domain characteristics of wind loads on the constructing tower, including wind pressure power spectrum at typical measuring points, lift and drag power spectrum, circumferential correlations between typical measuring points, and vertical correlations of lift coefficient and drag coefficient, were analyzed. The results revealed that the random characteristics of fluctuating wind loads, as well as corresponding extreme wind pressure and power spectra curves, varied significantly and in real time with the height of the constructing tower. This study provides references for design of wind loads during construction period of ultra-large cooling towers.

Aerodynamic and aero-elastic performances of super-large cooling towers

  • Zhao, Lin;Chen, Xu;Ke, Shitang;Ge, Yaojun
    • Wind and Structures
    • /
    • v.19 no.4
    • /
    • pp.443-465
    • /
    • 2014
  • Hyperbolic thin-shell cooling towers have complicated vibration modes, and are very sensitive to the effects of group towers and wind-induced vibrations. Traditional aero-elastic models of cooling towers are usually designed based on the method of stiffness simulation by continuous medium thin shell materials. However, the method has some shortages in actual engineering applications, so the so-called "equivalent beam-net design method" of aero-elastic models of cooling towers is proposed in the paper and an aero-elastic model with a proportion of 1: 200 based on the method above with integrated pressure measurements and vibration measurements has been designed and carried out in TJ-3 wind tunnel of Tongji university. According to the wind tunnel test, this paper discusses the impacts of self-excited force effect on the surface wind pressure of a large-scale cooling tower and the results show that the impact of self-excited force on the distribution characteristics of average surface wind pressure is very small, but the impact on the form of distribution and numerical value of fluctuating wind pressure is relatively large. Combing with the Complete Quadratic Combination method (hereafter referred to as CQC method), the paper further studies the numerical sizes and distribution characteristics of background components, resonant components, cross-term components and total fluctuating wind-induced vibration responses of some typical nodes which indicate that the resonance response is dominant in the fluctuating wind-induced vibration response and cross-term components are not negligible for wind-induced vibration responses of super-large cooling towers.

Analysis of the Thermal Environment around an Urban Green Area in Seoul, Korea Using Climate Analysis Seoul (CAS) (Climate Analysis Seoul (CAS)를 이용한 서울 도심 녹지 주변의 열 환경 분석)

  • Lee, Jisu;Lee, Young-Gon;Kim, Baek-Jo
    • Atmosphere
    • /
    • v.26 no.3
    • /
    • pp.413-421
    • /
    • 2016
  • Climate Analysis Seoul (CAS) which provides gridded data relevant for thermal assessment was applied to one of the urban green areas, the Seonjeongneung, in Seoul, Korea. The thermal environment in the Seonjeongneung was evaluated from the CAS simulation for the five heat-wave issued cases during the last five years (2011~2015). The CAS has been improved continuously since it was developed. An updated version with a higher resolution of the CAS simulation domain and an addition of the vegetation information was used in this study. The influence of vegetation in the Seonjeongneung is estimated through the amount of the cold air generation ($Q_{ca}$) and air temperature deviation at each grid points, which are calculated by incorporating Geographic Information System (GIS) analysis on the simulation domain and meteorological analysis with the METeorology and atmospheric PHOtochemistry mesoscale MODel (MetPhoMod) in the CAS. The average amount of the cold air generation ($Q_{ca}$) at the Seonjeongneung is about $25.5m^3m^{-2}h^{-1}$ for the whole cases, and this value is similar to the ones in a forest or a well-wooded region. The average value of the total air temperature deviation (TD) is $-2.54^{\circ}C$ at the Seonjeongneung for the five cases. However, this cooling effect of the urban green area disappeared when the region is replaced by high-rise buildings in the CAS simulation. The $Q_{ca}$ drastically decreases to about $1.1m^3m^{-2}h^{-1}$ and the average TD shows an increase of $1.14^{\circ}C$ for the same events. This result shows that the vegetation in the Seonjeongneung supposes to keep down temperature during the heat-wave issued day and the average cooling effect of the green region is $3.68^{\circ}C$ quantitatively from the TD difference of the two simulations. The cooling effect represented with the TD difference is larger than $0.3^{\circ}C$ within 200 m distance from the boundary of the Seonjeongneung. Further improvements of the thermodynamical and advection processes above the model surface are required to consider more accurate assessment of the cooling effect for the urban green area.

Investigation of the Thermal Performance of a Vertical Two-Phase Closed Thermosyphon as a Passive Cooling System for a Nuclear Reactor Spent Fuel Storage Pool

  • Kusuma, Mukhsinun Hadi;Putra, Nandy;Antariksawan, Anhar Riza;Susyadi, Susyadi;Imawan, Ficky Augusta
    • Nuclear Engineering and Technology
    • /
    • v.49 no.3
    • /
    • pp.476-483
    • /
    • 2017
  • The decay heat that is produced by nuclear reactor spent fuel must be cooled in a spent fuel storage pool. A wickless heat pipe or a vertical two-phase closed thermosyphon (TPCT) is used to remove this decay heat. The objective of this research is to investigate the thermal performance of a prototype model for a large-scale vertical TPCT as a passive cooling system for a nuclear research reactor spent fuel storage pool. An experimental investigation and numerical simulation using RELAP5/MOD 3.2 were used to investigate the TPCT thermal performance. The effects of the initial pressure, filling ratio, and heat load were analyzed. Demineralized water was used as the TPCT working fluid. The cooled water was circulated in the water jacket as a cooling system. The experimental results show that the best thermal performance was obtained at a thermal resistance of $0.22^{\circ}C/W$, the lowest initial pressure, a filling ratio of 60%, and a high evaporator heat load. The simulation model that was experimentally validated showed a pattern and trend line similar to those of the experiment and can be used to predict the heat transfer phenomena of TPCT with varying inputs.

A Cooling Method which Reduces the Tangential Tensile Stresses on a Work Roll Surface during Hot Slab Rolling (열연 슬라브 압연에서 워크롤 표면 원주방향 인장응력 감소를 위한 냉각 방법)

  • Na, D.H.;Lee, Y.
    • Transactions of Materials Processing
    • /
    • v.21 no.1
    • /
    • pp.58-66
    • /
    • 2012
  • The work roll surface temperature rises and falls repetitively during hot slab rolling because the work roll surface is cooled continuously by water. This study focused on Std. No. 7 to determine a cooling method which significantly reduces the tangential tensile stresses on the work roll surface of the hot slab mill at Hyundai Steel Co. in Korea. A series of finite element analyses were performed to compute the temperature distribution and the tensile stresses in the circumferential direction of the work roll. The virtual slab model was used to reduce the run time considerably by assigning a high temperature to the virtual slab. Except for the heat generated by plastic deformation, this is equivalent to the hot rolling condition that a high temperature slab (material) would experience when in contact with the work rolls. Results showed that when the virtual slab model was coupled with FE analysis, the run time was found to be reduced from 2000 hours to 70 hours. When the work roll surface cooled with a certain on-off patter of water spray, the magnitude of the tangential stresses on the work rolls were decreased by 54.1%, in comparison with those cooled by continuous water spraying. Savings of up to 83.3% in water usage are possible if the proposed water cooling method is adopted.