Analysis of Temperature Gradients in Greenhouse Equipped with Fan and Pad System by CFD Method

CFD 기법을 이용한 팬 앤 패드 냉방 온실의 온도경사 분석

  • Nam Sang Woon (Department of Bioresource Engineering, Chungnam National University) ;
  • Giacomelli Gene A. (Department of Agricultural and Biosystems Engineering, Controlled Environment Agriculture Center, University of Arizona) ;
  • Kim Kee Sung (Department of Agricultural and Biosystems Engineering, Controlled Environment Agriculture Center, University of Arizona) ;
  • Sabeh Nadia (Department of Agricultural and Biosystems Engineering, Controlled Environment Agriculture Center, University of Arizona)
  • 남상운 (충남대학교 농업생명과학대학 생물자원공학부) ;
  • ;
  • 김기성 (Arizona대학교 농업 및 생물시스템 공학과) ;
  • Published : 2005.06.01

Abstract

Evaporative cooling pad system is one of the main cooling methods in greenhouses and its efficiency is very high. However, it has some disadvantages such as greenhouse temperature distributions are not uniform and installation cost is expensive. In this study, a CFD simulation model f3r predicting the air temperature distribution in the fan and fad cooling greenhouse was developed. The model was calibrated and validated against experimental data and a good fit was obtained. The influence of different outside wind, fan and pad height, ventilation rate, shading, and greenhouse length, were then examined. In order to reduce the internal temperature gradients, it is desired that the prevail wind direction and the fan and pad heights are considered. The simulation indicates that high ventilation rates and shading contribute to reduce the temperature gradients in the fan and pad cooling greenhouse. In order to maintain the desired greenhouse temperature, the pad-to-fan distance should be restricted according to the design climate conditions, shading and ventilation rates. The developed CFD model can be a useful tool to evaluate and design the fan and pad systems in the greenhouses with various configurations.

팬 앤 패드 시스템은 국내외적으로 온실냉방에서 많이 이용되고 있으며, 그 효율도 매우 높지만 온실 내부의 온도분포가 불균일하고 설치비와 유지비가 많이드는 단점이 있다. 본 연구에서는 팬 앤 패드 시스템의 설계를 위한 자료를 제공할 목적으로 팬 앤 패드시스템 설치온실의 온도분포를 예측하기 위한 CFD 모델을 개발하였다. 개발된 모델은 실험 데이터를 이용하여 검증한 결과 실험치와 예측치가 잘 일치하여 모델의 응용이 가능할 것으로 판단되었다. 개발된 모델을 이용하여 온실 외부의 풍속과 풍향, 팬과 패드의 높이, 환기율에 따른 실내유속, 차광율 및 온실의 길이가 팬 앤 패드 냉방온실의 실내 온도경사에 미치는 영향을 검토하였다. 실내 온도경사를 감소시키기 위하여는 온실 설치 지역의 주풍향을 고려하고 팬과 패드의 높이가 적절해야 할 것으로 판단되었다. 시뮬레이션 결과 높은 환기율과 차광율은 팬 앤 패드 냉방 온실의 온도경사를 감소시키는데 기여할 수 있는 것으로 나타났다. 팬 앤 패드 냉방 온실의 온도를 적정 수준으로 유지시키기 위해서는 외부기상조건, 차광 및 환기율에 따라 온실의 길이를 제한해야 할 것으로 판단되었다. 개발된 CFD모델은 다양한 조건에서 팬 앤 패드 냉방온실의 설계와 평가에 유용한 도구가 될 수 있을 것으로 판단된다.

Keywords

References

  1. Arbel, A., O. Yekutieli and M. Barak. 1999. Performance of a fog system for cooling greenhouses. J. Agric. Engng Res. 72:129-136 https://doi.org/10.1006/jaer.1998.0351
  2. ASAE. 1997. Heating, ventilating and cooling greenhouses. ASAE Standards 1997:663-670
  3. Bartzanas, T., T. Boulard and C. Kittas. 2002. Numerical simulation of the airflow and temperature distribution in a tunnel greenhouse equipped with insect-proof screen in the openings. Computers and electronics in agriculture 34:207-221 https://doi.org/10.1016/S0168-1699(01)00188-0
  4. Bartzanas, T., T. Boulard and C. Kittas. 2004. Effect of vent arrangement on windward ventilation of a tunnel greenhouse. Biosystems Engineering 88:479-490 https://doi.org/10.1016/j.biosystemseng.2003.10.006
  5. Fluent Incorporated. 1998. FLUENT 5 user's guide. Lebanon, NH 03766
  6. Jain, D. and G.N. Tiwari. 2002. Modeling and optimal design of evaporative cooling system in controlled environment greenhouse. Energy Conservation and Management 43:2235-2250 https://doi.org/10.1016/S0196-8904(01)00151-0
  7. Kacira, M., T. Short and R. Stowell. 1998. A CFD evaluation of naturally ventilated, multi-span, sawtooth greenhouses. Transactions of the ASAE 41 :833-836 https://doi.org/10.13031/2013.17222
  8. Kim, M.K., K.S. Kim and S.W. Nam. 2001. Efficient application of greenhouse cooling systems. Ministry of Agriculture and Forestry. pp.186-188 (in Korean)
  9. Kittas, C., T. Bartzanas and A. Jaffrin. 2001. Greenhouse evaporative cooling: measurement and data analysis. Transactions of the ASAE 44:683-689
  10. Kittas, C., T. Bartzanas and A. Jaffrin. 2003. Temperature gradients in a partially shaded large greenhouse equipped with evaporative cooling pads. Biosystems Engineering 85:87-94 https://doi.org/10.1016/S1537-5110(03)00018-7
  11. Lee, I. and T.H. Short. 2001. Verification of computational fluid dynamic temperature simulations in a fullscale naturally ventilated greenhouse. Transactions of the ASAE 44:119-127 https://doi.org/10.13031/2013.2303
  12. Molina, F.D., D.L. Valera and A.J. Alvarez. 2004. Measurement and simulation of climate inside Almeria-type greenhouse using computational fluid dynamics. Agricultural and Forest Meteorology 125:33-51 https://doi.org/10.1016/j.agrformet.2004.03.009
  13. Mistrious, A. G., GPA Bot, P. Picuno and G ScarasciaMugozza. 1997. Analysis of the efficiency of greenhouse ventilation using computational fluid dynamics. Agricultural and Forest Meteorology 85: 217-228 https://doi.org/10.1016/S0168-1923(96)02400-8
  14. Okushima, L., S. Sase and M. Nara. 1989. A support system for natural ventilation design of greenhouses based on computational aerodynamics. Acta Horticulturae 248:129-136
  15. Val Products, Inc. 2005. http://www.valproducts.com/Air/EvapRec.html
  16. Yu, I.H., M.K. Kim, H.J. Kwon and K.S. Kim. 2002. Development of CFD model for estimation of cooling effect of fog cooling system in greenhouse. Journal of Bio-environment Control 11 :93-100 (in Korean)