• Title/Summary/Keyword: Cooling limit

Search Result 136, Processing Time 0.02 seconds

Evaluation of Formability of Copper Alloy for Regenerative Cooling Chamber before and after Heat Treatment (재생냉각 챔버 제작용 구리합금의 열처리 전후 성형성 평가)

  • Ryu, Chul-Sung;Lee, Keum-Oh;Choi, Hwan-Seok
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.12
    • /
    • pp.1201-1208
    • /
    • 2009
  • Dome stretching tests and tension tests were performed to evaluate the formability of a copper alloy used for manufacturing the regenerative cooling chamber. The test specimens were prepared to investigate the effect of heat treatment and direction of specimens on the formability. The test results show that forming limit values are increased by the heat treatment of the material but the variation of the forming limit values by manufacturing direction is negligible compared to the heat treatment effect, and forming limit values are also different according to the test methods. These results indicate that the high temperature heat treatment of the material before bulging is a very important process to deform the inner cylindrical structure of the regenerative cooling chamber into a nozzle shape by the bulging process without necking or fracture and the test methods also have a great effect on a evaluation of the formability. The forming limit diagram obtained in this study would be utilized to the design of regenerative cooling chamber nozzles.

Application of Miniature Heat Pipe for Notebook PC Cooling (노트북 PC CPU 냉각용 소형 히트파이프 Packaging 연구)

  • Moon, Seok-Hwan;Hwang, Gunn;Choy, Tae-Goo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.6
    • /
    • pp.799-803
    • /
    • 2001
  • Miniature heat pipe(MHP) with woven-wired wick was used to cool the CPU of a notebook PC. The pipe with circular cross-section was pressed and bent for packaging the MHP into a notebook PC with very limited compact packaging space. A cross-sectional area of the pipe is reduced about 30% as the MHP with 4mm diameter is pressed to 2mm thickness. In the present study a performance test has been performed in order to review varying of operating performance according to pressed thickness variation and heat dissipation capacity of MHP cooling module that is packaged on a notebook PC. New wick type was considered for overcoming low heat transfer limit when MHP is pressed to thin-plate. The limiting thickness or pressing is shown to be within the range of 2mm∼2.5mm through the performance test with varying the pressing thickness. When the wall thickness of 0.4mm is reduced to 0.25mm for minimizing conductive thermal resistance through the wall of heat pipe, heat transfer limit and thermal resistance of MHP were improved about 10%. In the meantime, it is shown that the thermal resistance and heat transfer limit for the MHP with central wick type are higher than those of MHP with existing wick types. The results of performance test for MHP cooling modules with woven-wired wick to cool a notebook PC shows the stability as cooling system since T(sub)j(Temperature of Processor Junction) satisfy a demand condition of 0∼100$\^{C}$ under 11.5W of CPU heat.

Suggestion of the Worth Evaluation of Cool Air and the Allocation Methodology of Cooling Cost (냉기의 가치평가 및 냉방비 배분방법론 제안)

  • Kim, Deok-Jin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.21 no.3
    • /
    • pp.201-208
    • /
    • 2009
  • Our government will make a plan regulating the cooling limit temperature of the summer season to 26 degree and the heating limit temperature of the winter season to 20 degree for energy saving. Where, the key point of this politic pursuit can be the charge system on heating and cooling cost. We have suggested new cost allocation methodology as a worth evaluation method in the precedent study, and preformed the worth evaluation and cost allocation on four kind of warm air produced from a heating system as an example. In this study, we applied the suggested method to four kind of cool air, and preformed the worth evaluation and cost allocation on each cool air. As a result, similarly to the precedent study, the more energy a customer saved, the more cooling unit cost decreased, and the more energy a customer consumed, the more cooling unit cost increased. From this analysis, we hope that the suggested methodology can offer a theoretical basis to the energy charge policy of government, and induce the spontaneous energy saving of consumers.

A Suggestion for the Cost Allocation Methodology of Cool Air Produced from Cooling System (냉방시스템에서 생산된 냉기의 가격배분 방법론 제안)

  • Kim, Deok-Jin
    • Proceedings of the SAREK Conference
    • /
    • 2008.11a
    • /
    • pp.499-504
    • /
    • 2008
  • Our government will make a plan regulating the cooling limit temperature of the summer season to 26 degree and the heating limit temperature of the winter season to 20 degree for energy saving. Where, the key point of this politic pursuit can be the charge system on heating and cooling cost. We have suggested new cost allocation methodology as a worth evaluation method in the precedent study, and preformed the worth evaluation and cost allocation on four kind of warm air produced from a heating system as an example. In this study, we applied the suggested method to four kind of cooling air as an example, and preformed the worth evaluation and cost allocation on each cooling air. As a result, similarly to the precedent study, the more energy a customer saved, the more heating unit cost decreased, and the more energy a customer consumed, the more heating unit cost increased. From this analysis, we hope that the suggested methodology can offer a theoretical basis to the politic pursuit of government, and induce the spontaneous energy saving of consumers.

  • PDF

Pressure-Temperature Limit Curve of Reactor Vessel by ASME Code Section III and Section XI

  • M.J. Jhung;Kim, S.H.;Lee, T.J.
    • Nuclear Engineering and Technology
    • /
    • v.33 no.5
    • /
    • pp.498-513
    • /
    • 2001
  • Performed here is a comparative assessment study for the generation of the pressure- temperature (P/T) limit curve of the reactor vessel. Using the cooling or heating rate and vessel material properties, the stress distribution is obtained to calculate stress intensity factors, which are compared with the material fracture toughness to determine the relations between operating pressure and temperature during cool-down and heat-up. P/T limit curves are generated with respect to crack direction, clad thickness, toughness curve, cooling or heating rate and neutron fluence, and their results are compared.

  • PDF

Pressure-temperature limit curve for reactor vessel evaluated by ASME code

  • Jhung, Myung Jo;Kim, Seok Hun;Jung, Sung Gyu
    • Structural Engineering and Mechanics
    • /
    • v.14 no.2
    • /
    • pp.191-208
    • /
    • 2002
  • A comparative assessment study for a generation of the pressure-temperature (P-T) limit curve of a reactor vessel is performed in accordance with ASME code. Using cooling or heating rate and vessel material properties, stress distribution is obtained to calculate stress intensity factors, which are compared with the material fracture toughness to determine the relations between operating pressure and temperature during reactor cool-down and heat-up. P-T limit curves are analyzed with respect to defect orientation, clad thickness, toughness curve, cooling or heating rate and neutron fluence. The resulting P-T curves are compared each other.

A Thermodynamic Study on Suction Cooling-Steam Injected Gas Turbine Cycle (吸氣冷却-蒸氣噴射 가스터빈 사이클에 관한 열역학적 연구)

  • 박종구;양옥룡
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.1
    • /
    • pp.77-86
    • /
    • 1992
  • This paper discusses the thermodynamic study on the suction cooling-steam injected gas turbine cycle. The aim of this study is to improve the thermal efficiency and the specific output by steam injection produced by the waste heat from the waste heat recovery boiler and by cooling compressor inlet air by an ammonia absorption-type suction cooling system. The operating region of this newly devised cycle depends upon the pinch point limit and the outlet temperature of refrigerator. The higher steam injection ratio and the lower the evaporating temperature of refrigerant allow the higher thermal efficiency and the specific output. The optimum pressure ratios and the steam injection ratios for the maximum thermal efficiency and the specific output can be found. It is evident that this cycle considered as one of the most effective methods which can obtain the higher thermal efficiency and the specific output comparing with the conventional simple cycle and steam injected gas turbine cycle.

Effects of Finite-Rate Chemistry and Film Cooling on Linear Combustion-Stability Limit in Liquid Rocket Engine (액체 로켓엔진에서 선형 연소 안정한계에 미치는 유한화학반응 및 막냉각 효과)

  • Sohn Chae Hoon;Park I-Sun;Moon Yoon Wan;Kim Hong-Jip;Oh Hwa Young;Huh Hwanil
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • v.y2005m4
    • /
    • pp.189-193
    • /
    • 2005
  • Thermal effect of finite-rate chemistry on linear combustion stability and film cooling effect are investigated in sample rocket engine. The flow variables required to evaluate stability limits are obtained from CFD data with finite-rate chemistry adopted in three dimensional chamber. Major flow variables are affected appreciably by finite-rate chemistry and thereby, the calculated stability limits are modified. It is found that finite-rate chemistry contributes to stability enhancement in thermal point of view. And film cooling also has the effect of combustion stabilization.

  • PDF

Effects of Finite-Rate Chemistry and Film Cooling on Linear Combustion-Stability Limit in Liquid Rocket Engine (액체 로켓엔진에서 선형 연소 안정한계에 미치는 유한화학반응 및 막냉각 효과)

  • Son, Chae-Hun;Kim, Hong-Jip;Heo, Hwan-Il;Park, Lee-Seon;Mun, Yun-Wan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.2
    • /
    • pp.75-81
    • /
    • 2006
  • Thermal effect of finite-rate chemistry on linear combustion stability and film-cooling effect are investigated in sample rocket engines. The flow variables required to evaluate stability limits are obtained from CFD data with finite-rate chemistry adopted in three dimensional chamber. Major flow variables are affected appreciably by finite--rate chemistry and thereby, the calculated stability limits are modified. It is found that finite-rate chemistry contributes to stability enhancement in thermal point of view. And film cooling also has the effect of combustion stabilization.

Forming Limit Evaluation of Copper Alloy for Liquid Rocket Combustion Chamber (액체로켓 연소기용 구리합금의 성형한계성 평가)

  • Ryu, Chul-Sung;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.194-197
    • /
    • 2007
  • The dome stretching and tension test have been made to obtain a forming limit curve(FLC) for the copper alloy which is used for manufacturing the regenerative cooling chamber. For experimental survey of the forming limit curve, we have used in-plane tension specimen to obtain tension-compression strain state and also out of plane specimen to obtain tension-tension strain state through dome stretching test. All specimens are divided into longitudinal and radial direction specimens by the manufacturing method. The test results shows that in tension-tension region, copper alloy possesses a maximum major strain of 62.3% and maximum minor strain of 58.6%. In the tension-compression region, maximum major strain is 60.5% and maximum minor strain is 25.8%.

  • PDF