• 제목/요약/키워드: Cooling in the mold

검색결과 280건 처리시간 0.025초

연청동주물(鉛靑銅鑄物)의 조직(組織)에 미치는 용해(熔解) 및 주입조건(鑄入條件)의 영향(影響)에 관한 연구(硏究) (Effect of Melting and Pouring Conditions on Structures of Leaded Tin Bronze Castings)

  • 이운환;최창옥
    • 한국주조공학회지
    • /
    • 제7권1호
    • /
    • pp.45-52
    • /
    • 1987
  • The effects of melting and casting conditions on cast structures of Cu-Sn-Pb alloys were studied. Specimens were prepared at different pouring temperatures of $1100^{\circ}C$ to $1260^{\circ}C$ with use of various kind of molds, green sand mold, $CO_2$ sand mold, shell mold, furan sand mold and metallic mold. (1) The transition of equiaxed to columnar structure greatly influenced by adding elements and mold binders. (2) The change of equiaxed structure according to pouring temperatures were expressed by separation theory. Lower pouring temperature and rapid cooling rate increase hardness and it's further increase was shown in the region of columnar structure. (3) Proper controls of pouring temperature, cooling rate and mold binder were important factors to improve wear properties of Cu-Sn-Pb alloys castings.

  • PDF

오류역전파 알고리즘을 이용한 최적 사출설형 냉각시스템 설계 (Optimum Cooling System Design of Injection Mold using Back-Propagation Algorithm)

  • 태준성;최재형;이병옥
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2009년도 춘계학술대회 논문집
    • /
    • pp.357-360
    • /
    • 2009
  • The cooling stage greatly affects the product quality in the injection molding process. The cooling system that minimizes temperature variance in the product surface will improve the quality and the productivity of products. In this research, we tried the back-propagation algorithm of artificial neural network to find an optimum solution in the cooling system design of injection mold. The cooling system optimization problem that was once solved by a response surface method with 4 design variables was solved by applying the back-propagation algorithm, resulting in a solution with a sufficient accuracy. Furthermore the number of training points was much reduced by applying the fractional factorial design without losing solution accuracy.

  • PDF

H종 주상용 몰드 변압기의 덕크구조에 따른 열해석 특성 (Surface Ageing Property of Polymer Insulator for Transmission line with Forest Fire Test)

  • 조한구;김광용
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2010년도 하계학술대회 논문집
    • /
    • pp.111-111
    • /
    • 2010
  • The mold transformers have been widely used in underground substations in large building and have some advantages in comparison to oil-transformer, that is low fire risk, excellent environmental compatibility, compact size and high reliability. In addition, the application of mold transformer for outdoor is possible due to development of epoxy resin. The mold transformer generally has cooling duct between low voltage coil and high voltage coil. A mold transformer made by one body molding method has been developed for small size and low loss, but it needs some cooling method because heat radiation between each winding is difficult. In this paper, the temperature distribution and thermal stress analysis of H class 100kVA pole cast resin transformer for power distribution are investigated by FEM program.

  • PDF

주형의 회전이 Al-Cu 합금의 응고과정에 미치는 영향 (The effect of mold rotation on solidification process of an Al-Cu alloy)

  • 유호선
    • 대한기계학회논문집B
    • /
    • 제21권4호
    • /
    • pp.525-540
    • /
    • 1997
  • The effect of mold rotation on the transport process and resultant macrosegregation pattern during solidification of an Al-Cu alloy contained in a vertical axisymmetric annular mold cooled from the inner wall is numerically investigated. The mold initially at rest starts to rotate at a prescribed angular velocity simultaneously with the beginning of cooling. Computed results for a representative case show that the mold rotation essentially suppresses the development of both thermal and solutal convections in the melt, creating distinct characteristics such as the liquidus front, flow pattern and temperature distribution from those for the stationary mold. Thermal convection which develops at the early stages of cooling is soon extinguished by the rotating flow induced during spin-up, and thus does not effectively remove the initial superheat from the melt. On the other hand, solutal convection, though it weakens considerably and is confined within the mushy zone, still predominates over the solute redistribution process. With increasing the angular velocity, the solute transport in the axial direction is enhanced, whereas that in the radial direction is reduced. The final macrosegregation formed in the mold rotating at moderate angular velocities appears to be favorable in comparison with the stationary casting, in that not only relatively homogenized composition is achieved, but also a severely positive-segregated channel is restrained.

사출금형의 균일 냉각을 위한 냉각회로의 다중목적함수 최적설계 (Multi-objective Optimization of an Injection Mold Cooling Circuit for Uniform Cooling)

  • 박창현;박정민;최재혁;이병옥;최동훈
    • 한국자동차공학회논문집
    • /
    • 제20권1호
    • /
    • pp.124-130
    • /
    • 2012
  • An injection mold cooling circuit for an automotive front bumper was optimally designed in order to simultaneously minimize the average of the standard deviations of the temperature and the difference in mean temperatures of the upper and lower molds for uniform cooling. The temperature distribution for a specified design was evaluated by Moldflow Insight 2010, a commercial injection molding analysis tool. For efficient design, PIAnO (Process Integration, Automation and Optimization), a commercial PIDO tool, was used to integrate and automate injection molding analysis procedure. The weighted-sum method was used to handle the multi-objective optimization problem and PQRSM, a function-based sequential approximate optimizer equipped in PIAnO, to handle numerically noisy responses with respect to the variation of design variables. The optimal average of the standard deviations and difference in mean temperatures were found to be reduced by 9.2% and 56.52%, respectively, compared to the initial ones.

휨 변경 최소화 근접 냉각 금형을 통한 고성능 고효율 플라스틱 축류팬 개발 (Development of high performance and efficiency plastic axial fan by proximity cooling mold to minimize warpage)

  • 신광호;김미애;채보혜;박상옥;김용대
    • Design & Manufacturing
    • /
    • 제13권1호
    • /
    • pp.61-67
    • /
    • 2019
  • The cooling unit of the industrial showcase consists of a compressor, a condenser and an evaporator. An axial fan is used to circulate the air to improve the efficiency of the heat exchanger. In the past, aluminum fans have been used, which have problems such as low performance, efficiency, high failure rate, and high noise. This study is to develop high performance, high efficiency plastic fan replacing aluminum fan. A major factor in determining the performance and noise of an axial fan is the angle and cross-sectional shape of the blade, which is suitable for raising the lift force, thereby controlling the vortex, which is the main cause of noise and performance degradation. In order to produce a high efficiency injection molded fan, it is necessary to develop a mold that minimizes the deformation of the injection process for the designed shape. In this study, we developed a high efficiency, low noise plastic injection fan with more than 11% performance improvement and noise reduction compared to conventional aluminum fan.

2상 스테인레스 주강의 공냉 열처리 적용 가능성 (Applicability of Air Cooling Heat-treatment for a Duplex Stainless Steel Casting)

  • 김봉환;양식;신제식;이상목;문병문
    • 한국주조공학회지
    • /
    • 제26권1호
    • /
    • pp.17-26
    • /
    • 2006
  • The substitution of cooling method from water quenching to air cooling after solution heat treatment was aimed for the development of a convenient and economical heat treatment process of duplex stainless steels without deterioration of mechanical and corrosion resistant properties for the industry. In order to achieve this goal, the mechanical properties and corrosion properties of a ASTM A890-4A duplex stainless steel were systematically investigated as functions of casting condition and cooling method after solution heat treatment. A 3-stepped sand mold and a permanent Y-block mold were used to check the effects of solidification structure and cooling rate after solution heat treatment. The microstructural characteristics such as the ferrite/austenite phase ratio and the precipitation behavior of ${\sigma}$ phase and carbides were investigated by combined analysis of OM and SEM-EDX with an aid of TTT diagram. Hardness and tension test were performed to evaluate the mechanical properties. Impact property at $-40^{\circ}C$ and corrosion resistance were also examined to check the possibility of the industrial application of this basic study. Throughout this investigation, air-cooling method was proved to effectively substitute for water-quenching process after the solution heat treatment, when the duplex stainless steel was sand mold cast with a thickness below 15 mm or permanent mold cast with a thickness below 20 mm.

펠티어 소자를 이용한 사출 금형의 온도제어 (Active Control of Injection Mold Temperature using the Peltier Device)

  • 조창연;신홍규;박동영;홍남표;김병희
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2007년도 춘계학술대회 논문집
    • /
    • pp.183-186
    • /
    • 2007
  • The injection molding process has high accuracy and good reproducibility that are essential for mass production at low cost. Conventional molding processes typically use the water-based mold heating and air cooling methods. However, in the nano injection molding processes, this semi-active mold temperature control results in the several defects such as air-flow mark, non-fill, sticking and tearing, etc. Therefore, in order to control temperature of the molds actively and improve the quality of the molded products, the novel nano injection molding system, which uses active heating and cooling method, has been introduced. By using the Peltier devices, the temperature of locally adiabatic molds can be controlled dramatically and the quality of the molded patterns can be improved.

  • PDF

일체형 주상용 몰드변압기의 덕트에 따른 열해석 특성 연구 (The Thermal Analysis of Pole Mount Mold Transformer with One-body Molding by Duct Condition)

  • 조한구;이운용
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2003년도 하계학술대회 논문집 Vol.4 No.2
    • /
    • pp.1135-1138
    • /
    • 2003
  • The transformer is major equipment in power receiving and substation facilities. Necessary conditions required for the transformer are compactness, lightness, high reliability, economic advantages, and easy maintenance. The pole-mount transformer installed in distribution system is acting direct role in supply of electric power and it is electric power device should drive for long term. Most of modem transformer are oil-filled transformer and accident is happening considerable. The mold transformers have been widely used in underground substations in large building and have some advantages in comparison to oil-transformer, that is low fire risk, excellent environmental compatibility, compact size and high reliability. In addition, the application of mold transformer for outdoor is possible due to development of epoxy resin. The mold transformer generally has cooling duct between low voltage coil and high voltage coil. A mold transformer made by one body molding method has been developed for small size and low loss. One body molding transformer needs some cooling method because heat radiation between each winding is difficult. In this paper, The thermal analysis of pole mount mold transformer with one body molding by duct condition is investigated and the test result of temperature rise is compared with simulation data.

  • PDF

일체형 주상용 몰드 변압기의 덕트에 따른 열해석 특성 연구 (The Thermal Analysis of Pole Mount Mold Transformer with One-body Molding by Duct Condition)

  • 조한구;이운용;박영두
    • 한국전기전자재료학회논문지
    • /
    • 제17권3호
    • /
    • pp.348-352
    • /
    • 2004
  • The mold transformers have been widely used in underground substations in large building and have some advantages in comparison to oil-transformer, that is low fire risk, excellent environmental compatibility, compact size and high reliability. In addition, the application of mold transformer for outdoor is possible due to development of epoxy resin. The mold transformer generally has cooling duct between low voltage coil and high voltage coil. A mold transformer made by one body molding method has been developed for small size and ow loss, but it needs some cooling method because heat radiation between each winding is difficult. The life of transformer is significantly dependent on the thermal behavior in windings. Many transformer designers have calculated temperature distribution and hot spot point by finite element method(FEM) to analyze winding temperature rise. In this paper, The thermal analysis of pole mount mold transformer with one body molding by duct condition is investigated and the test result of temperature rise is compared with simulation data.