• Title/Summary/Keyword: Cooling energy consumption

Search Result 469, Processing Time 0.029 seconds

Thermal Performance of Solar Cooling & Hot-water System According to Control Condition (태양열 냉방 및 급탕 시스템의 제어 조건에 따른 열성능)

  • Lee, Ho;Joo, Hong-Jin;Kim, Sang-Jin;Kwak, Hee-Yeol
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2008.11a
    • /
    • pp.214-219
    • /
    • 2008
  • This study is describes thermal performance of solar cooling and hot water for demonstration system with ETSC(Evacuated tubular solar collector) installed at Seo-gu culture center of Kwanju. Control condition for solar cooling and hot water system is changed by connection of auxiliary heater. Demonstration system was connected to central air conditioning system. Demonstration system was operated by two types. First type(A) was operated to cooling and hot water supply in that order. Second type(B) was operated to hot water supply and cooling in that order. As a result. it was indicated that the total solar energy consumption of (A) was 799 MJ and the solar energy consumption rate for the cooling and hot water supply was 70% and 30% respectively. Total solar energy consumption of (b) was 898 MJ and the solar energy consumption rate for the cooling and hot water supply was 31% and 69% respectively.

  • PDF

The Relationship between Energy Consumption and Factors Affecting Heating and Cooling

  • Park, Kwon Sook;Kim, Seiyong
    • Architectural research
    • /
    • v.19 no.1
    • /
    • pp.7-11
    • /
    • 2017
  • Energy consumption in university building has steadily increased over the last decade, and a strong upward trend in recent years. This study was undertaken to analyze the relationship between energy consumption and their affecting factors, six academic buildings were considered. The factors limited to heating and cooling, which is the main end use (nearly 60 per cent of total energy consumption in university buildings), encompassing system and operating schedules (user activity) and area use. To understand how to building is used, operated and managed, walk-through assessment was conducted as well as interview with university staff. The results show that the energy consumption of the humanities building was somewhat smaller than the consumption of the science and engineering building, and its range was from $31.26kgoe/m^2$ to $23.52kgoe/m^2$, depending on heating and cooling system and area use. And the energy consumption of the science and engineering building was related to operating schedules (user activity) as well as laboratory equipment characteristics. More analysis on a larger number of buildings is required in the future, including building form and material performance level to generalize the significant factors influencing building energy consumption.

Energy Performance Evaluation of Building Micro-grid System Including Micro-turbine in Hospital Buildings (마이크로터빈이 포함된 빌딩마이크로그리드시스템의 병원건물의 에너지성능평가)

  • Kim, Byoung-Soo;Hong, Won-Pyo
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2009.10a
    • /
    • pp.279-283
    • /
    • 2009
  • Distributed generation(DG) of combined cooling, heat. and power(CCHP)has been gaining momentum in recent year as efficient, secure alternative for meeting increasing energy demands. This paper presents the energy performance of microturbine CCHP system equipped with an absorption chiller by modelling it in hospital building. The orders of study were as following. 1)The list and schedule of energy consumption equipment in hospital were examined such as heating and cooling machine, light etc. 2) Annual report of energy usage and monitoring data were examined as heating, cooling, DHW, lighting, etc. 3) The weather data in 2007 was used for simulation and was arranged by meteorological office data in Daejeon. 4) Reference simulation model was built by comparison of real energy consumption and simulation result by TRNSYS and ESP-r. The energy consumption pattern of building were analyzed by simulation model and energy reduction rate were calculated over the cogeneration. As a result of this study, power generation efficiency of turbine was about 30% after installing micro gas turbine and lighting energy as well as total electricity consumption can be reduced by 40%. If electricity energy and waste heat in turbine are used, 56% of heating energy and 67% of cooling energy can be reduced respectively, and total system efficiency can be increased up to 70%.

  • PDF

Comparative study on the effect of cooling & heating loads by lighting energy of various light sources in an office building

  • Hong, Won Pyo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.30 no.3
    • /
    • pp.94-105
    • /
    • 2016
  • The objective of the work was to evaluate the impact of lighting energy to cooling and heating consumption in medium scale office building, when currently installed fluorescent lights were replaced with various LED lighting fixtures. This evaluation comes from an integrated approach combining the proper indoor lighting environment and the thermal aspects of cooling & heating consumption in office building. These simulations were performed by coupling an appropriate luminaire analysis for energy consumption and a dynamic thermal simulation software (TRNSYS). To analyze comparative study of effects on the heating, cooling loads, and energy consumption of an LED lamp application, 2 types of LED lamp with low light power watt(LPW) 24W and high LPW 7.5W and a fluorescent lights(FL) with 37W are used respectively. Integrated building energy consumption decreased up to 3.2% when fluorescent lamps were replaced with LEDs. Thus, the high LPW of LED(7.5W) replaced with the same number of FL shows an effective energy saving and cost- effective luminary.

Analytical Study on the Performance Characteristics of an Instant Cooling Type Water Purifier with the Design Parameters of the Cooling Tank (순간냉각식 정수기 냉수조의 설계변수에 따른 성능 특성에 관한 해석적 연구)

  • Jeon, Yong-Seok;Park, Hong-Hee;Lee, Joo-Seoung;Kim, Yong-Chan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.7
    • /
    • pp.545-552
    • /
    • 2012
  • The objective of this study is to analyze the effect on the energy consumption of an instant cooling type water purifier by the design parameters of the cooling tank. Initially, the simulation program was developed and verified. The simulation results showed that the energy consumption was reduced by replacing the shape of the cooling tank from a rectangular to a cube, increasing the evaporator length, decreasing the volume of the cooling tank, and increasing the performance of the insulator. The order of the effect magnitude on the energy consumption was as follows; volume of the cooling tank, conductivity and thickness of the insulator, shape of the cooling tank, length of the evaporator, and length of the water tube.

Detailed Analysis on Operation Characteristics and Cooling Energy Saving Effect of Chiller Staging in an Office Building (사무소 건물에서 냉동기의 대수제어를 통한 냉동기 거동 특성 및 에너지 절감 효과 분석)

  • Seo, Byeong-Mo;Son, Jeong-Eun;Lee, Kwang Ho
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.4
    • /
    • pp.137-144
    • /
    • 2016
  • Commercial buildings account for a significant proportion of the total building energy use in Korea, and cooling energy, in turn, accounts for the largest proportion of total energy consumption in commercial buildings. Under this circumstance, chiller staging is considered to be a reasonable and practical solution for cooling energy saving. In this study, the part-load ratio and the operating characteristics of a vapor compression chiller were analysed within an office building. In addition, energy consumption among different chiller staging schemes was comparatively analysed. As a result, significant proportions of total operating hours, cooling load and energy consumption turned out to be in the part load ratio range from 0% through 50%, and thus energy consumption was significantly affected by the chiller COP at low part-load conditions, indicating that the chiller operation at the part-load is an important factor in commercial buildings. In addition, utilizing a sequential chiller staging scheme can reduce the annual cooling energy usage by more than 10.3% compared to operating a single chiller.

A Comparative Analysis of Energy Simulation Results and Actual Energy Consumption on Super High-rise Apartments (초고층 공동주택의 세대별 냉난방부하 시뮬레이션 결과 및 에너지 실사용량과의 비교 분석)

  • Suh, Hye-Soo;Kim, Byung-Seo
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.4
    • /
    • pp.34-40
    • /
    • 2011
  • Apartment Housing has been increasing steadily, particularly our current super high-rise apartment houses that represent the culture has become a trend in Korea. These super high-rise apartment houses' curtain wall system increases heating and cooling loads, it is expected to vary by each unit's thermal properties. In this study, measured indoor environment and energy simulation results were compared to actual energy consumption. As a result, the various factors that affect heating and cooling loads, such as direction, plan type and glazing area, influence each unit's load characteristic. In particular, according to the electricity costs savings behavior, the occupant's thermal discomfort is expected to be large in summer. Therefore, to reduce heating and cooling load for each unit requires a reasonable plan.

Ventilation Rate Impact on Heating and Cooling Energy Consumption in Residential Buildings : Concentrated on a Detached House in Cold and Hot/Humid Climatic Zones of USA (환기량의 주거건물 냉난방에너지 소비에 대한 영향 : 미국 한랭기후 및 고온다습기후의 단독주택을 중심으로)

  • Moon, Jin-Woo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.11
    • /
    • pp.747-753
    • /
    • 2011
  • The purpose of this study was to quantify the impact of the ventilation rate on heating and cooling energy consumption in a detached house. For it, a series of simulations for the application of the diverse ventilation rate (ACH) were computationally conducted for a prototypical detached residential building in the cold climate (Detroit, Michigan) and hot/humid climate (Miami, Florida) of USA. Analysis revealed that ventilation is a significant heat losing source in the cold climate; thus, the higher ventilation rate significantly increases the heating energy consumption and energy cost in the cold climate; while the impact on energy increase for heating and cooling energy consumption is similar in hot/humid climate with less significancy compared to cold climate. The research outcome of this study could be a fundamental data for determining the optimal ventilation rate in terms of indoor air quality, but also building energy performance well.

Insulation Performance and Heating and Cooling Energy Consumption depending on the Window Reveal Depth in External Wall Insulation (외단열 벽체에서 창호 설치 위치에 따른 단열성능 및 냉난방 에너지 소비량)

  • Rhee, Kyu-Nam;Jung, Gun-Joo
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.33 no.12
    • /
    • pp.91-98
    • /
    • 2017
  • In this study, the effect of window installation position in the residential building with the external insulation was numerically investigated in terms of insulation performance and heating/cooling energy consumption. For different window positions, 2-D heat transfer simulation was conducted to deduce the linear thermal transmittance, which was inputted to the dynamic energy simulation in order to analyze heating/cooling energy consumption. Simulation results showed that the linear thermal transmittance ranges from 0.05 W/mK to 0.7 W/mK, and is reduced as the window is installed near the external finish line. Indoor surface temperature and TDR analysis showed that the condensation risk is the lowest when the window is installed at the middle of the insulation and wall structure. It was also found that the window installation near the external finish can reduce the annual heating/cooling energy consumption by 12~16%, compared with the window installation near the interior finish. Although the window installation near the external finish can achieve the lowest heating/cooling energy consumption, it might lead to increased condensation risks unless additional insulation is applied. Thus, it can be concluded that the window should be installed near the insulation-wall structure junction, in consideration of the overall performance including energy consumption, condensation prevention and constructability.

Simultaneous water and energy saving of wet cooling towers, modeling for a sample building

  • Ataei, Abtin;Choi, Jun-Ki;Hamidzadeh, Zeinab;Bagheri, Navid
    • Advances in environmental research
    • /
    • v.4 no.3
    • /
    • pp.173-181
    • /
    • 2015
  • This article outlines a case study of water and energy savings in a typical building through a modelling process and analysis of simultaneous water-energy saving measures. Wet cooling towers are one of the most important equipments in buildings with a considerable amount of water and energy consumption. A variety of methods are provided to reduce water and energy consumption in these facilities. In this paper, thorough the modeling of a typical building, water and energy consumption are measured. Then, After application of modern methods known to be effective in saving water and energy, including the ozone treatment for cooling towers and shade installation for windows, i.e. fins and overhangs, the amount of water and energy saving are compared with the base case using the Simergy model. The annual water consumption of the building, by more than 50% reduction, has been reached to 500 cubic meters from 1024 cubic meters. The annual electric energy consumption has been decreased from 405,178 kWh to 340,944 kWh, which is about 16%. After modeling, monthly peak of electrical energy consumption of 49,428 has dropped to 40,562 kWh. The reduction of 18% in the monthly peak can largely reduce the expenses of electricity consumption at peak.