• Title/Summary/Keyword: Cooling and Heating load

Search Result 387, Processing Time 0.035 seconds

An Analysis of Heating and Cooling Loads by Insulated Shades and Control Method in an Energy Saving Apartment (에너지절약형 주택에서의 단열차양 적용과 제어방법에 따른 냉난방부하 분석)

  • Kwon, Kyung-Woo;Won, Jong-Seo
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.33-38
    • /
    • 2009
  • Energy loss from windows accounts for large scores of heating and cooling loads also in energy saving apartments that is reduced over 30% of total energy consumption. Movable reflective insulations, insulation shutters, blinds, insulated shades are used to reduce energy loads from windows. In this study, energy saving performance of insulated shades was simulated by control methods. According to installation of insulated shades, heating loads were decreased about $10.5{\sim}11.3%$, and cooling loads are decreased about $11.0{\sim}15.5%$ on an energy saving apartment. The heating peak load was reduced about 9.5% by insulated shades, but the cooling peak load is hardly ever decreased. Because in the condition of cooling peak load, latent cooling loads accounts for large score of cooling loads. Difference of the energy loads by a schedule control method and an outdoor detection control was no more than 5% for a base model. In the case of insulated shades with automatic control system, simple time schedule control system would be more efficient than outdoor detection control system that should use several sensors.

  • PDF

Analyses of Heating and Cooling load in Greenhouse of Protected Horticulture Complex in Taean (태안 시설원예단지의 온실 냉난방 부하 분석)

  • Suh, Won-Myung;Bae, Yong-Han;Heo, Hae-Jun;Kwak, Cheul-Soon;Lee, Suk-Gun;Lee, Jong-Won;Yoon, Yong-Cheol
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.51 no.6
    • /
    • pp.45-52
    • /
    • 2009
  • This study was conducted in the process that the basic plan of the formation of the thermal energy complex in the Iwon reclaimed land of Taean was being made. Targeting for the large-sized greenhouse to be made in this area, it examined the cooling and heating load and the amount of ventilation, and also analyzed the economic efficiency of heating. The research results are as per the below: The minimum ambient temperature of this area was measured on January 7, 2001, which was $-18.7^{\circ}C$, and the maximum ambient temperature of this area was measured on July 24, 1994, which was $36.7^{\circ}C$. The maximum heating load was 39,011 MJ/h, but the date when the maximum heating load was not consistent with the date when the minimum temperature was measured. The maximum cooling load was 88,562MJ/h, It was approximately 2.3 times of the maximum heating load, which was measured at 14:00 hours on September 4, 2000. The maximum amount of ventilation heat was 138,639MJ/h. Assuming the rate of solar heat use as 10%, 20%, 50%, and 100%, the total sum of cost-benefit would be ₩-193,450,000, ₩-634,930,000, ₩-3,372,960,000, and ₩-9,850,420,000, respectively 20 years later. The break-even point of the geothermal heat pump would be about 4 years for 10% use, about 3 years for 20% or 50% use, and approximately 6 years for 100% use. It was found that 50% use would be most advantageous. In case two systems are combined, the break-even point will be 10 years, 8 years, and 11 years respectively.

TRNSYS Dynamic Simulation for Solar Heating and Cooling Load Estimations (태양열 냉난방 부하산정을 위한 TRNSYS 동적 시뮬레이션)

  • Choi, Chang-Yong;Ko, Sang-Cheol;Kwak, Hee-Youl
    • Journal of the Korean Solar Energy Society
    • /
    • v.26 no.1
    • /
    • pp.1-6
    • /
    • 2006
  • This paper presents the heating and cooling load estimations for the library of a cultural center building located in Gwangju Korea by TRNSYS with Type 56 of multi-zone building components. In this study, energy rate control mode is selected and the design temperatures for heating and cooling are specified respectively as 20oC and 26oC. Reading rooms of the library are located on the third floor of the cultural center building, and this third floor space is modeled as the five thermal zones for the TRNSYS simulation. Among the five zones, attention is given to the two zones which are the reading rooms 1 and 2. Since these two zones are to be heated and cooled by the solar thermal system which is planned to be installed in the building, dynamic thermal behaviors of the two zones are analyzed by the heating and cooling load estimations.

The performance evaluation of outdoor unit cooling system in a residential apartment complex (주상복합의 실외기 형태에 따른 냉방시스템 성능 평가)

  • Kyung, Seo-Kyung;Kim, Yun-Jin;Lim, Jung-Hee;Kim, Byung-Seon
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2008.11a
    • /
    • pp.263-268
    • /
    • 2008
  • In a residential complex case, the efficiency of land use are maximized, but a variation of external condition such as load in-equality, the increase in wind velocity and solar radiation by a height causes increasing energy in a building. Besides, because of increasing window size for a lighting and a view, it comes heating load in winter and cooling load in summer. A choice of cooling-system is important for this reason. Recently an internal high-rise residential complex installs an air-cooling system and operates individual heating. However, this study applies water-cooling used one public cooling-tower instead of an air-cooling system, also with an efficiency test of an air and a water-cooling system, consider an internal applicability.

  • PDF

Evaluation of the Heating and Cooling Systems in School Buildings (학교건물 냉난방설비시스템의 실태조사)

  • AHN, Chul-Lin;KIM, Dong-Gyue;KUM, Jong-Soo;PARK, Jong-Un;PARK, Hee-Ouk;CHUNG, Yong-Hyun
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.17 no.1
    • /
    • pp.18-25
    • /
    • 2005
  • We have researched 10,811 schools to evaluate the characteristics of school buildings and the conditions of heating and cooling systems at the elementary, middle and high school levels. Air conditioning systems in school buildings are related to school scale, and 35% of the researched schools have less than 10 air conditioned classrooms among all of the schools in Korea. The LOADSYS is used to grasp the characteristics of school buildings heating and cooling load. From the results of this work, the heating load differs by nearly 24% between Seoul and Busan, but other than that there are not so many serious regional differences. Almost 85.4% of the classrooms are equipped with heating facilities and 6.9% of them are equipped with heating and cooling facilities. As a result, it is necessary to make improvements in 31.8% of the classrooms using only heaters and 14.6% of the classrooms not equipped with HVAC. The survey shows that there is a wide gap in the heating equipment status of the classrooms according to the region and school district.

Performance Analysis of Water-to-Air Heat Pump System under Water Temperature and Load Ratio (열원 및 부하조건에 따른 물-공기 히트펌프 시스템의 성능분석)

  • Cho, Yong;Lee, Dong Keun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.194.2-194.2
    • /
    • 2011
  • Heating and cooling performance has been analyzed for the water-source heat pump system using raw water from Daechung reservoir. During heating operation from March to May, water temperature is not good condition for a heat source due to the higher atmospheric temperature. Avearged heating load ratio is only 14.3%, and the averaged unit COP and system COP are estimated to be 2.46 and 2.15 respectively. The COP is affected considerably by the water temperature, and the unit COP is increased from 2.16 at $5^{\circ}C$ to 2.95 at $11^{\circ}C$. Cooling performance is analyzed with the measured data from June to August. During cooling operation, raw water has lower temperature by 4. $5^{\circ}C{\sim}4.7^{\circ}C$ than the atmosphere. The load ratio is 39.2%, and the averaged unit COP and system COP are estimated to be 7.25 and 6.13 respectively. The heating COP is affected by the load ratio rather than water temperature. The COP is increased for 20%~40% load ratio, while is decreased for 40%~60% load ratio. It is estimated that the compressor operation combination for 3 (two constant speed and one inverter) compressors is changed for the load ratio.

  • PDF

A Building Heating and Cooling Load Analysis of Super Tall Building considering the Vertical Micro-climate Change (초고층 오피스 건물의 수직외부환경 변화가 건물부하에 미치는 영향)

  • Kim, Yang-su;Song, Doosam;Hwang, Suk-Ho
    • KIEAE Journal
    • /
    • v.10 no.4
    • /
    • pp.117-122
    • /
    • 2010
  • In these days numerous super tall buildings are under construction or being planned in Middle East and Asian countries. Some of them are planned as an ultra high-rise building that goes over 600m tall, including Burj Khalifa, the tallest building in the world. External environment such as wind speed, temperature and humidity of the super tall building varies due to its vertical height. Therefore, it is necessary to consider these environmental changes to estimate building heating and cooling load. This paper analyzes how vertical microclimate difference affects building heating and cooling load in super tall building by simulation using radiosonde climate data. Besides, the correlation between air-tightness of building envelope and building load was analyzed for a super tall building.

A Study on the Baseline Load Estimation Method using Heating Degree Days and Cooling Degree Days Adjustment (냉난방도일을 이용한 기준부하추정 방법에 관한 연구)

  • Wi, Young-Min
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.5
    • /
    • pp.745-749
    • /
    • 2017
  • Climate change and energy security are major factors for future national energy policy. To resolve these issues, many countries are focusing on creating new growth industries and energy services such as smartgrid, renewable energy, microgrid, energy management system, and peer to peer energy trading. The financial and economic evaluation of new energy services basically requires energy savings estimation technologies. This paper presents the baseline load estimation method, which is used to calculate energy savings resulted from participating in the new energy program, using moving average model with heating degree days (HDD) and cooling degree days (CDD) adjustment. To demonstrate the improvement of baseline load estimation accuracy, the proposed method is tested. The results of case studies are presented to show the effectiveness of the proposed baseline load estimation method.

Analysis of Building Energy by the Typical Meteorological Data (표준기상데이터(부산지역) 적용에 따른 건축물에너지 분석)

  • Park, So-Hee;Yoo, Ho-Chun
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2008.11a
    • /
    • pp.202-207
    • /
    • 2008
  • Measures for coping with energy shortage are being sought all over the world. Following such a phenomenon, effort to use less energy in the design of buildings and equipment are being conducted. In particular, a program to evaluate the performance of a building comes into the spotlight. However. indispensable standard wether data to estimate the exact energy consumption of a building is currently unprepared. Thus, after appling standard weather data for four weather factors which were used in previous researches to Visual DOE 4.0, we compared it with the result of the existing data and evaluated them. For the monthly cooling and heating load of our target building, we used revised data for June, July, August, and September during which cooling load is applied. When not the existing data but the revised data was used, the research shows that an average of 14.9% increased in June, August, and September except for July. Also, in a case of heating load, the result by the revised data shows a reduction of an average of 11.9% from October to April during which heating load is applied. In particular, the heating loads of all months for which the revised data was used were more low than those of the existing data. In the maximum cooling and heating load according to load factors, the loads by residents and illumination for which the revised data was used were the same as those of the existing data, but the maximum cooling loads used by the two data have a difference in structures such as walls and roofs. Through the above results, the research cannot clearly grasp which weather data influences the cooling and heating load of a building. However, in the maximum loads by the change of weather data in four factors (dry-bulb temperature, web-bulb temperature, cloud amount, and wind speed) among 14 weather factors, the research shows that 5.95% in cooling load and 27.56% in heating load increased, and these results cannot be ignored. In order to make weather data for Performing energy performance evaluation for future buildings, the flow of weather data for the Present and past should be obviously grasped.

  • PDF

Interaction Analysis between Cooling-to-Heating Load Ratio and Primary Energy Consumption of HVAC&R System for Building Energy Conservation (건물의 냉, 난방 부하비율과 HVAC&R 시스템 1차 에너지 소비량의 상관관계분석 및 합리적 설계방안 연구)

  • Cho, Jinkyun;Kim, Jinho;Lee, Suengjae;Kang, Hosuk
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.3
    • /
    • pp.113-122
    • /
    • 2015
  • HVAC&R systems account for more than 50% of the energy consumption of buildings. The purpose of this study is to propose an optimal design method for the HVAC&R system and to examine the possibility for the energy conservation of a selected system. The energy demand for cooling and heating is determined by using TRNSYS and HEET. By an interaction between total system efficiency and cooling-to-heating load ratio, the optimal HVAC&R systems will be decided. The results showed that this proposed method is significantly capable of determining optimal system and building design for saving energy.