• Title/Summary/Keyword: Cooling Oil

Search Result 367, Processing Time 0.022 seconds

The Intelligent Control Algorithm of a Transformer Cooling System (변압기 냉각시스템의 지능제어알고리즘)

  • Han, Do-Young;Won, Jae-Young
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.8
    • /
    • pp.515-522
    • /
    • 2010
  • In order to improve the efficiency of a transformer cooling system, the intelligent algorithm was developed. The intelligent algorithm is composed of a setpoint algorithm and a control algorithm. The setpoint algorithm was developed by the neural network, and the control algorithm was developed by the fuzzy logic. These algorithms were used for the control of a blower and an oil pump of the transformer cooling system. In order to analyse performances of these algorithms, the dynamic model of a transformer cooling system was used. Based on various performance tests, energy savings and stable controls of a transformer cooling system were observed. Therefore, control algorithms developed for this study may be effectively used for the control of a transformer cooling system.

Cooling Design and Flight Test for Airplane Reciprocating Engine (항공기 왕복엔진 냉각설계 및 인증시험)

  • Lee, Kangyi;Park, Jonghyuk;Park, Sunghwan
    • Journal of Aerospace System Engineering
    • /
    • v.6 no.2
    • /
    • pp.35-41
    • /
    • 2012
  • A reciprocating engine installed on a normal category airplane shall be effectively cooled by air flown through the engine compartment. A airplane powerplant designer has to design cooling air inlets, baffles, seals, and outlets to maintain cylinder head temperatures and oil temperature under the limits, and show compliance with appropriate airworthiness standard. In this study, cooling designs of the installed engine and compliance requirements applicable to the cooling designs were reviewed, and engine cooling flight test results were evaluated for design changes. Engine cooling certification test will be conducted in a next step.

Numerical analysis for the dis tribution transformer design (400KVA급 배전 변 압기 열 유동해석)

  • Yang, S.W.;Kim, W.S.;Kweon, K.Y.;Lee, S.K.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.699-702
    • /
    • 2008
  • This paper describes the numerical simulations in the cooling of the radiator in a distribution transformer. The aim of this work is the cooling optimization of the transformer by CFD simulations. A clear understanding of the cooling pattern in a radiator which is a main heat remover in the power transformer is essential for optimizing the radiator design increasing the thermal efficiency. In this paper we study the heat transfer and fluid flow in a 3-phase 400kVA transformer. The plate radiators of this transformer become wrinkled (corrugated radiator) and there are filled with transformer oil. The oil is circulated due to the natural convection driven by buoyancy effects through radiators so that the ultimate cooling medium is the surrounding air. In the design of transformers, it is of interest to minimize the cost and size of radiators. The obtained results show the temperature and flow distributions and the possibility to optimize the transformer with 3-dimensional CFD models using FLUENT.

  • PDF

A Study on the Cooling Characteristic of a 154kV Less-Flammable Power Transformer (154kV 방재형 난연 변압기 냉각특성에 관한 연구)

  • Park, J.H.;Oh, W.K.;Ha, Y.S.
    • Proceedings of the KIEE Conference
    • /
    • 2001.10a
    • /
    • pp.61-64
    • /
    • 2001
  • Demand for development of 154kV Less-Flammable Power transformer is now increasing greatly instead of a oil-immersed transformer for preventing disasters and Less-flammability of substations. The most important point in developing Less-flammable transformer is cooling system. This paper describes the study on cooling characteristic of Less-flammable transformer.

  • PDF

A Study on the Operation Performance of Diesel Engine by using of Soybean Oil Fuel (디젤엔진의 콩기름연료에 의한 운전성능에 관한 시험)

  • 이기명
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.18 no.4
    • /
    • pp.4259-4264
    • /
    • 1976
  • This paper, is about the test on the operating performance of diesel engine by using of soybean oil which farmers could supply in their farm yard. The diesel engine used is a swirl-chamber type, four stroke cycle with single cylinder, air cooling and its rated horse power is 2 PS per 1300 rpm. Several results obtained are as follows; 1. The starting performance of diesel engine with soybean oil is almost the same as that with light oil. 2. The variation of engine speed according to various engine load is small when soybean oil is used compared with light oil. It is considered that soybean oil is desirable for the purpose of industerial power machine fuel. 3. The specific fuel consumption increases approximately 10 percent high in the condition of rated horse power and maximum horse power and shows less or same during the load test in low velocity, when soybean oil is used 4. Though the brake thermal efficiency in the condition of rated horse power and maximum horse power is inclined to decrease when soybean oil is used compared during the load test in low velocityt shows good inclination.

  • PDF

GC/MS Analysis of Ethylene Glycol in the Contaminated Lubricant Oil Through Solvent Extraction Followed by Derivatization using Bistrimethylsilyltrifluoroacetamide (BSTFA) (엔진윤활유 중 Ethylene Glycol의 용제추출후 bistrimethylsilyltrifluoroacetamide(BSTFA)를 이용한 GC/MS 분석에 관한 연구)

  • Lee, Joon-Bae;Kwon, O-Seong;You, Jae-Hoon;Shon, Shungkun;Sung, Tae-Myung;Paeng, Ki-Jung
    • Tribology and Lubricants
    • /
    • v.28 no.6
    • /
    • pp.315-320
    • /
    • 2012
  • For proper functioning, general machines usually need lubricant oil as a cooling, cleaning, and sealing agent at points of mechanical contact. The quality of lubricant oil can deteriorate during operation owing to various causes such as high temperature, combustion products and extraneous impurities. In this study, a heavy load stopped during operation, and the oil was analyzed to check whether any impurities were added. Extraction using acetonitrile followed by reaction with BSTFA(bistrimethylsilyl trifluoroacetamide) showed that, trimethylsilylated ethylene glycol was present in the lubricant oil. To quantify the ethylene glycol in the oil, deuterium-substituted ethylene glycol, which acted as an internal standard, was added to the sample and then extracted with the solvent. Next, the extract was reacted with the derivatizing agent(BSTFA) and then analyzed with GC/MS. The detection limit of this method was found to be $0.5{\mu}g/g$ and the recovery of oil containing $20,000{\mu}g/g$ of ethylene glycol was measured to be 94.8%. A damaged O-ring and eroded cylinder liner were found during the overhaul, which implied the leakage of coolant containing ethylene glycol into the lubricating system. The erosion of the cylinder liner was assumed to be due to cavitation of the coolant in the cooling system.

Development of Simulation Program of Automotive Engine Cooling System (자동차 엔진냉각계의 해석 프로그램의 개발)

  • 배석정;이정희;최영기
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.11
    • /
    • pp.943-956
    • /
    • 2003
  • A numerical program has been developed for the simulation of automotive engine cooling system. The program determines the mass flow rate of engine coolant circulating the engine cooling system and radiator cooling air when the engine speed is adopted by appropriate empirical correlation. The program used the method of thermal balance at individual element through the model for radiator component in radiator analysis. This study has developed the program that predicts the coolant mass flow rate, inlet and outlet temperatures of each component in the engine cooling system (engine, transmission, radiator and oil cooler) in its state of thermal equilibrium. This study also combined the individual programs and united into the total performance analysis program of the engine cooling system operating at a constant vehicle speed. An air conditioner system is also included in this engine cooling system so that the condenser of the air conditioner faces the radiator. The effect of air conditioner to the cooling performance, e.g., radiator inlet temperature, of the radiator and engine system was examined. This study could make standards of design of radiator capacity using heat rejection with respect to the mass flow rate of cooling air. This study is intended to predict the performance of each component at design step or to simulate the system when specification of the component is modified, and to analyze the performance of the total vehicle engine cooling system.

Fatigue Life Analysis and Cooling Conditions Evaluation of a Piston for Large LPLi Bus Engines (LPG 액정분사식 대형 버스용 엔진 피스톤의 피로수명 해석과 냉각조건 평가)

  • 최경호;이부윤
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.5
    • /
    • pp.762-772
    • /
    • 2004
  • Fatigue life of a Piston for large liquid Petroleum liquid injection(LPLi) bus engines is analyzed considering effects of cooling condition parameters : temperature of cooling water, and heat transfer coefficients at oil gallery and bottom surface of piston head. Temperature of the piston is analyzed with varying cooling conditions Stresses of the piston from two load cases of pressure loading. and pressure and thermal loading are analyzed Fatigue life under repeated peak pressure and thermal cycle is analyzed by the strain-life theory. For the two load cases, required loading cycles for engine life are defined, and loading cycles to failure and partial damages are calculated. Based on the resulting accumulated fatigue usage factors, endurance of the piston is evaluated and effects of varying cooling condition Parameters are discussed.

Economic Feasibility Assessment of a Deep Sea Water District Cooling System (건물냉방시스템에 해양심층수 적용의 경제성 분석)

  • Kim, Sam-Uel;Cho, Sooi
    • Journal of the Korean Solar Energy Society
    • /
    • v.29 no.2
    • /
    • pp.14-21
    • /
    • 2009
  • Recently, alternative energy resources have emerged considerably due to the high oil prices and environment problems. Deep sea water that is one of the natural energy sources can be one of the attractive solutions to reduce the environment problems, and there are already a few examples in some developed countries. In this study, cooling system of deep sea water using heat exchangers of two hotels, located in near Haeundae Bay in Busan, have been analyzed on the quantity of electricity and gas use comparison between existing cooling system and deep seawater cooling system by using E-Quest simulation program. The results of the study showed that the Hotel A approximately saves 370 millions won per year, and the Hotel B saves 248 millions won per year. It means that the cooling system by using deep sea water has great worth to reduce the ratio of fuel sources.

재질이 변압기 절연유의 유동대전에 미치는 영향

  • 곽희로;김재철;김두석;권동진
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.5 no.3
    • /
    • pp.72-77
    • /
    • 1991
  • In a large power transformer, insulating oil is forced to circulate for cooling the heat generated by the losses within windings and core. When insulating oil flows and rubs against various materials, such as insulating paper or core, the electrostatic charges are separated at the interface of the oil and the solid material. This paper considers the streaming electrification of various materials used in the transformer. In this study, we show that a solid material such as paper is negatively charged. On the other hand, a solid material such as core is positively charged.

  • PDF