• 제목/요약/키워드: Cooling Load Profile

검색결과 15건 처리시간 0.023초

주거건물의 냉방 부하 패턴에 따른 구체축열시스템 운전 방안 (Operating Mode of Thermally Activated Building System (TABS) for Residential Buildings According to their Cooling Load Profile)

  • 박상훈;여명석;유미혜;이유지;정웅준;김광우
    • 한국주거학회논문집
    • /
    • 제23권2호
    • /
    • pp.99-106
    • /
    • 2012
  • Compared to Packaged Terminal Air Conditioning Systems, Radiant Cooling Systems have the advantage of energy saving and thermal comfort. Thermally Activated Building System (TABS) is one of the radiant heating and cooling systems. The main difference between TABS and other radiant systems lies in the usage of the time-lag effect of storing heat energy in the concrete. Current energy usage in summer time is concentrated within a specific time by using Packaged Terminal Air-Conditioner (PTAC). Due to the time-lag effect of TABS, energy usage can be distributed to other time zones. To maximize this effect, it is important to determine the appropriate operating mode, which for TABS is dependent upon the cooling load generated by the occupancy schedule. In this study, occupancy schedules are determined for various residential types. The operating modes of TABS for these residential types are estimated by using a dynamic computational simulation method. The results indicate that the operating modes of TABS can be determined by residential type and occupancy schedule. The load handled ratio by TABS is set up differently according to the cooling load profile obtained from residential type and occupancy schedule. By using TABS, energy consumption could be reduced by 20% compared to PTAC.

기상자료와 냉난방 실측자료를 이용한 열부하 추정과 예측: 다계층모형의 활용 (Estimation and Prediction of the Heat Load Profile Using Weather and Heating/Cooling Data : An Application of the Multilevel Model)

  • 문춘걸;김수덕
    • 자원ㆍ환경경제연구
    • /
    • 제16권4호
    • /
    • pp.803-832
    • /
    • 2007
  • 새로운 접단에너지 사업에 대한 경제성 평가와 기존 집단에너지 시설의 최적운용을 위해서는 적어도 시간대 단위로 계측된 세부용도별 에너지 부하패턴에 관한 정보가 필수적이다. 본 연구에서는 기상자료와 냉난방 실측자료를 활용하여 열부하를 추정 예측하기 위하여 다계층모형을 선태하였다. 다계층모형은 수집한 자료의 패널자료 특성을 유연하게 모형화할 수 있는 이점이 있다. 다계층모형을 일대일의 대응관계에 있는 선형혼합효과모형으로 변환한 후 패널 FGLS(연산가능한 일반화최소자승추정법)를 적용하여 세부용도별로 열부하모형을 추정하였다. 추정된 부하모형은 온도, 습도, 시간대, 요일, 설날연휴/추석연휴 등 법정공휴일 특성, 난방면적/냉방면적이 열에너지사용량에 미치는 영향을 고려하고 있다. 지면을 고려하여 본 논문에서는 가정용 난방부하모형의 추정치와 난방부하곡선의 예측치에 제한하여 실증결과를 설명하고 있다.

  • PDF

정재파 열음향 냉각기의 스택 온도구배에 대한 연구 (A Study on the Stack Temperature Profile of a Standing Wave Thermoacoustic Cooler)

  • 백인수
    • 한국음향학회지
    • /
    • 제28권1호
    • /
    • pp.19-24
    • /
    • 2009
  • 정재파 열음향 냉각기의 스텍에서의 온도 구배와 냉각기 효율의 관계에 대한 연구를 수행하였다. 스택에서의 로트식 (Rott Equation) 을 이용하여, 스택을 통과하는 엔탈피 플럭스의 크기가 크게 되면, 스택에서의 온도구배가 비선형의 특성을 나타내는 것을 밝혀내었다. 또한 이런 비선형의 스택 온도구배가 열음향 냉각기의 냉각 효율을 저하시키는 것을 확인하였다. 1/4 파장의 정재파 열음향 냉각기를 이용한 시뮬레이션을 통해, 특정길이의 스택에 대해 냉각 용량이 커질수록, 또한 특정냉각 용량에 대해, 스택의 길이가 길어질수록 비선형의 스택 온도구배가 크게 일어남을 알아낼 수 있었다.

전축열방식 빙축열 시스템의 최적제어 알고리즘 (Optimal Control Algorithms for the Full Storage Ice Cooling System)

  • 한도영;이준호
    • 설비공학논문집
    • /
    • 제14권4호
    • /
    • pp.350-357
    • /
    • 2002
  • Optimal control algorithms for the full storage ice cooling system were developed by using a dynamic simulation program. Control algorithms for the storage charging mode were developed for the chiller outlet temperature setpoint control and the chiller capacity control. Control algorithms for the storage discharging mode were developed for the proper mode selection, the storage-only mode control, and the storage-priority chiller-shared mode control. Two different cases of the expected outdoor air temperature profile and the expected cooling load profile were used to analyze the effectiveness of these algorithms. Simulation results show the energy savings and the satisfactory controls of the ice storage system. Therefore, control algorithms developed for this study may effectively be used for the improved control of the ice storage cooling system.

A consistent FEM-Vlasov model for hyperbolic cooling towers on layered soil under unsymmetrical wind load

  • Karakas, Ali I.;Ozgan, Korhan;Daloglu, Ayse T.
    • Wind and Structures
    • /
    • 제22권6호
    • /
    • pp.617-633
    • /
    • 2016
  • In this paper, the analysis of hyperbolic cooling tower on elastic subsoil exposed to unsymmetrical wind loading is presented. Modified Vlasov foundation model is used to determine the soil parameters as a function of vertical deformation profile within subsoil. The iterative parameter updating procedure involves the use of Open Application Programming Interface (OAPI) feature of SAP2000 to provide two way data flow during execution. A computing tool coded in MATLAB employing OAPI is used to perform the analysis of hyperbolic cooling tower with supporting columns over a hollow annular raft founded on elastic subsoil. The analysis of such complex soil-structure system is investigated under self-weight and unsymmetrical wind load. The response of the cooling tower on elastic subsoil is compared with that of a tower that its supporting raft foundation is treated as fixed at the base. The results show that the effect of subsoil on the behavior of cooling tower is considerable at the top and bottom of the wall as well as supporting columns and raft foundation. The application of a full-size cooling tower has demonstrated that the procedure is simple, fast and can easily be implemented in practice.

페리미터존의 에어배리어 공조방식에 따른 실내 열환경 평가 (Evaluation of Indoor Thermal Environment According to Air-Barrier Air Conditioning System in Perimeter Zone)

  • 박병윤;함흥돈;손장열
    • 설비공학논문집
    • /
    • 제17권4호
    • /
    • pp.370-376
    • /
    • 2005
  • For the purpose of investigating the effective removal of heating/cooling load from light-weighted building envelope, two air-conditioning systems, conventional parameter air-conditioning system and air-barrier system, are evaluated and compared by both experiment and simulation with six different cases during heating and cooling season. In addition, the characteristics of window-side building thermal load are assessed by varying supply air velocity in order to seek the optimal system operation condition. The results are as follows. 1) Air-barrier system is more effective to remove heating/cooling load at perimeter zone than conventional parameter air-conditioning system. Moreover, the better effectiveness appears during cooling season than during heating season. 2) The experiment during cooling season provides that indoor temperature of air-barrier system shows $1^{\circ}C$ less than that of the conventional system with similar outdoor air temperature profile, and indoor temperature distribution is more uniform throughout the experimented model space. It concludes that air-barrier system can achieve energy saving comparing to the conventional system. 3) The capturing efficiency of air-barrier system is 0.47 on heating season and 0.2 on cooling season with the same supply air volume. It results that the system performs effectively to remove building thermal load, moreover demonstrates high efficiency during cooling season. 4) The simulation results provide that capturing efficiency to evaluate the effective removal of building load from perimeter zone shows high value when supply air velocity is 1 m/s.

노후 학교건물의 창호 교체에 따른 부하분석 (Analysis of Heating and Cooling Load Profile According to the Window Retrofit in an Old School Building)

  • 이예지;김주욱;송두삼
    • 설비공학논문집
    • /
    • 제29권9호
    • /
    • pp.455-462
    • /
    • 2017
  • The purpose of this study is to analyze heating and cooling load variation due to envelope retrofits in an old school building. In a previous study, envelope retrofit of an old school building resulted in annual energy consumption reduction. However, cooling energy consumption increased with the envelope retrofit. This is because of high internal heat generation rates in school buildings and internal heat cannot escape through windows or walls when the envelope's thermal performance improves. To clarify this assumption, thermal performance changes due to envelope retrofits were analyzed by simulation. Results revealed indoor temperature and inner window surface temperature increased with high insulation level of windows. Indoor heat loss through windows by conduction, convection and radiation decreased and resulted in an increase of cooling load in an old school building. From results of this study, energy saving impact of envelope retrofits in an old school building may not be significant because of high internal heat gain level in school buildings. In case of replacing windows in school buildings, local climate and internal heat gain level should be considered.

대형병원 건물에 마이크로 가스터빈 적용을 위한 에너지성능 및 경제성 평가 (The Energy Performance & Economy Efficiency Evaluation of Micro Gas Turbine Installed in Hospital)

  • 김병수;홍원표
    • 한국태양에너지학회 논문집
    • /
    • 제29권5호
    • /
    • pp.8-13
    • /
    • 2009
  • Feasibilities of the application of a micro gas turbine cogeneration system to a large size hospital building are studied by estimating energy demands and supplies. The energy demand for electricity is estimated by surveying and sorting the consumption records for various equipment and devices. The cooling heating, and hot water demands are further refined with TRNSYS and ESP-r to generate load profiles for the subsequent operation simulations. The operation of the suggested cogeneration system in conjunction with the load data is simulated for a time span of a year to predict energy consumption and gain profile. The simulation revealed that the thermal efficiency of the gas turbine is about 30% and it supplies 60% of the electricity required by the building. The recovered heat can meet 56% of total heating load and 67% of cooling, and the combined efficiency reaches up to 70%.

가솔린엔진의 부하(負荷)에 따른 실린더 벽면 온도특성(溫度特性)에 관(關)한 연구(硏究) (An Experimental Study on the Cylinder Wall Temperature Characteristics for Load Variations in a Gasoline Engine)

  • 권기린;고장권;홍성찬
    • 동력기계공학회지
    • /
    • 제3권1호
    • /
    • pp.16-22
    • /
    • 1999
  • The purpose of this study is to prevent the stick, scuffing, scratch between piston and cylinder, is to contribute the piston design such as piston profile, clearance by calculating reaction force by over-lap of piston skirt, as measuring the temperature distributions of cylinder wall. The experiment has been peformed to obtain data during actual engine operation. Temperature gradient in peripheral and axial distributions of cylinder wall according to torque and speed of engine were measured by use of an 800cc class gasoline engine. The results obtained are summarized as follows ; 1) The temperature of cylinder wall at TDC was about $50{\sim}75^{\circ}C$ higher than temperature of cooling water. 2) The rear side temperature of top dead center was $141^{\circ}C$(1/4 load) in axial distribution, whereas the rear side of midway position temperature was $98^{\circ}C$. 3) The temperature of cylinder wall increased in according to rising temperature of cooling water. 4) The thrust side temperature of cylinder wall was about $15^{\circ}C$ in all load test. 5) The rear side temperature of top dead center was $159^{\circ}C$ (1/2 load) in peripheral distribution, it was about $39^{\circ}C$ higher than thrust side temperature.

  • PDF

동적제빙형 빙축열시스템에 대한 최적운전계획 (Optimal Scheduling for Dynamic Ice Storage System with Perfectly Predicted Cooling Loads)

  • 이경호;이상렬;최병윤;권성철
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집D
    • /
    • pp.286-291
    • /
    • 2001
  • This paper describes an optimal scheduling for ice slurry systems for energy cost saving. The optimization technique applied in the study is the dynamic programming method, for which the state variable is the storage in the ice storage tank and the control variable is the state of chiller's on-off switching. Though the costs during charge period is included in optimization by taking the average cost of ice per hour for slurry making, the time horizon for the simulation is limited building cooling period because accurate charge rate from the ice maker into the ice storage tank cannot be estimated during the charge period. In the operating simulation after optimizing procedure, energy consumption and operating cost for the optimal control are calculated and compared with them for a conventional control with one case of cooling load profile.

  • PDF