• Title/Summary/Keyword: Cooling Circuit

Search Result 160, Processing Time 0.027 seconds

Characteristic Analysis and Design of Switched Reluctance Motor for the Improved 2-phase Snail-earn Type Fan Motor

  • Lee, Ji-Young;Lee, Geun-Ho;Hong, Jung-Pyo
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.4B no.1
    • /
    • pp.1-5
    • /
    • 2004
  • This paper deals with the design and analysis of a 2-phase Switched Reluctance Motor (SRM) used for the cooling fan motor of a refrigerator. To reduce the dead zone and improve the efficiency, the snail-earn type rotor pole and the asymmetric stator pole are investigated. For the optimal shape design, the performances of each model are obtained from numerical calculation results by 2D time-stepping finite element method (FEM) coupled with circuit equations. The accuracy of analysis is verified by comparing the analysis results with experimental data. According to the investigation results, improved shapes of stator and rotor poles are proposed.

Comparison between Water and N-Tetradecane as Insulation Materials through Modeling and Simulation of Heat Transfer in Packaging Box for Vaccine Shipping

  • Dao, Van-Duong;Jin, Ik-Kyu;Hur, Ho;Choi, Ho-Suk
    • Clean Technology
    • /
    • v.22 no.1
    • /
    • pp.45-52
    • /
    • 2016
  • This study reports on the modeling and simulation of heat transfer in packaging boxes used for vaccine shipping. Both water and n-tetradecane are used as primary insulation materials inside a multi-slab system. The one-dimensional model, which is a spherical model using a radius equivalent to the rectangular geometry of container, is applied in this study. N-tetradecane with low thermal diffusivity and proper phase transition temperature exhibits higher heat transfer resistance during both heating and cooling processes compared to water. Thus, n-tetradecane is a better candidate as an insulating material for packaging containers for vaccine shipping. Furthermore, the developed method can also become a rapid and economic tool for screening appropriate phase change materials used as insulation materials with suitable properties in logistics applications.

Forced Convection in a Flow Channel with Multiple Obstacles (다수의 장애물을 가진 유동채널에서의 강제 대류에 관한 연구)

  • Nam, Pyung-Woo;Cho, Sung-Hwan
    • Solar Energy
    • /
    • v.9 no.1
    • /
    • pp.62-69
    • /
    • 1989
  • This analysis is to investigate the influence of inflow angle when cooling air flows into PC (Printed Circuit) board channels. Flow between PC board channels with heat generating blocks is assumed laminar, incompressible, two-dimensional. Geometric parameters (block spacing (S), block height (H), block width (W) and channel height (L)) are held fixed. Inflow angle variations are $-10^{\circ},\;0^{\circ},\;10^{\circ}$, where uniform heat flux per unit axial length Q (W/m) from heated block surfaces is generated. The governing equations for velocity and temperature are solved by SIMPLE (Semi-Implicit Method Pressure for Linked Equation) algorithm. Nusselt number on each block surfaces is analyzed after a numerical calculation result. The result shows that the assumption on parallel inflow (inflow angle to channel, $0^{\circ}$) to PC board channels can be used without large error even when inflow' angle is varied.

  • PDF

Heat Transfer Analysis of Infrared Reflow Soldering Process for Attaching Electronic Components to Printed Circuit Boards (전자부품의 인쇄회로기판 부착시 적외선 Reflow Soldering과정 열전달 해석)

  • Son, Young-Seok
    • Journal of Welding and Joining
    • /
    • v.15 no.6
    • /
    • pp.105-115
    • /
    • 1997
  • A numerical study is performed to predict the thermal response of a detailed card assembly during infrared reflow soldering. The card assembly is exposed to discontinuous infrared panel heater temperature distributions and high radiative/convective heating and cooling rates at the inlet and exit of the oven. The convective, radiative and conduction heat transfer within the reflow oven as well as within the card assembly are simulated and the predictions illustrate the detailed thermal responses. The predictions show that mixed convection plays an important role with relatively high frequency effects attributed to buoyancy forces, however the thermal response of the card assembly is dominated by radiation. The predictions of the detailed card assembly thermal response can be used to select the oven operating conditions to ensure proper solder melting and minimization of thermally induced card assembly tresses and warpage.

  • PDF

An experimental study on the performance of a window system air-conditioner using R407C and R410B (R407C 및 R410B 적용 창문형 에어컨의 성능에 관한 실험적 연구)

  • Kim, M.H.;Shin, J.S.;Kim, K.J.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.9 no.4
    • /
    • pp.536-544
    • /
    • 1997
  • This study presents test results of a residential window system air-conditioner using R22 and two potential alternative refrigerants, R407C and R410B. A series of performance tests was performed for the basic and liquid-suction heat exchange cycle in a psychrometric calorimeter test facility. For R407C, the same rotary compressor was used as in the R22 system. However, compressor for the R410B system was modified to provide the similar cooling capacity. The evaporator circuit was changed to get a counter-cross flow heat exchanger to take advantage of zeotropic mixture's temperature glide, and liquid-line suction-line heat exchange cycle was also considered to improve the performance of the system. Test results were compared to those for the basic R22 system.

  • PDF

A study on the Second-Harmonic Generation(SBG) Conversion Characteristics of Nd:YAG Laser adopted Differential Superposition Mesh (중첩회로를 적용한 펄스형 Nd:YAG 레이저의 2차 SHG 변환효율에 관한 특성연구)

  • 김휘영;박두열
    • Proceedings of the IEEK Conference
    • /
    • 2001.06e
    • /
    • pp.215-218
    • /
    • 2001
  • A pulsed Nd:YAG laser is used widely for materials processing and medical instrument. It's very important to control the laser energy density in those fields using a pulsed Nd:YAG laser. A pulse repetition rate and a pulse width are regarded as the most dominant factors to control the energy density of laser beam. In this paper, the alternating charge and discharge system was designed to adjust a pulse repetition rate. This system is controlled by microprocessor and allows to frequence an expensive condenser for high frequency to cheap one for low frequency. In addtion, The microcontroller monitors the flow of cooling water, short circuit, and miss firing and so on. We designed Nd:YAG laser firmware with smart microcontroller, and want to explain general matters about the firmware from now.

  • PDF

Experimental Study of An Indirect-Refrigeration System with Carbon Dioxide (이산화탄소를 이용한 간접 냉장시스템의 실험적 연구)

  • Kim, Yoonsup;Baik, Wonkeun;Yun, Rin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.5
    • /
    • pp.202-207
    • /
    • 2016
  • Experimental studies for an indirect R404A-$CO_2$ refrigeration system and a direct R404A refrigeration system were conducted. The configurations of the indirect R404A-$CO_2$ refrigeration system are a R404A refrigeration system as a top cycle and a circulating $CO_2$ system as a bottom cycle. The direct R404A system was modified from indirect R404A-$CO_2$ refrigeration system by removing circuit for $CO_2$ circulation. Various tests for both systems were conducted by changing load side brine temperature from 0 to 5 and $10^{\circ}C$ with cooling brine temperatures for R404A system at 15, 20, or $25^{\circ}C$. The indirect R404A-$CO_2$ refrigeration system showed the highest COP when load side brine temperature was at $10^{\circ}C$ in the evaporator and at cooling brine temperature of $15^{\circ}C$. The COP of 3.04 under that condition was the highest. This indirect R404A-$CO_2$ refrigeration system showed 9.02% higher COP than the direct R404A system that had increased pipeline length of 15 m, which simulated actual installation in a supermarket.

Fundamental Study of Energy Harvesting using Thermoelectric Module on Road Facilities (열전소자를 활용한 도로구조물에서의 에너지 하베스팅 기초 연구)

  • Lee, Jae-Jun;Kim, Dae-Hoon;Lee, Kang-Hwi;Lim, Jae-Kyu;Lee, Seung-Tae
    • International Journal of Highway Engineering
    • /
    • v.16 no.6
    • /
    • pp.51-57
    • /
    • 2014
  • PURPOSES : An conventional method for electric power generation is converting thermal energy into mechanical energy then to electrical energy. Due to environmental issues such as global warming related with $CO_2$ emission etc., were the limiting factor for the energy resources which resulting in extensive research and novel technologies are required to generate electric power. Thermal energy harvesting using thermoelectric generator is one of energy harvesting technologies due to diverse advantages for new green technology. This paper presents a possibility of application of the thermoelectric generator's application in the direct exchange of waste solar energy into electrical power in road space. METHODS : To measure generated electric power of the thermoelectric generator, data logger was adopted as function of experimental factors such as using cooling sink, connection methods etc. Also, the thermoelectric generator、s behavior at low ambient temperature was investigated as measurement of output voltage vs. elapsed times. RESULTS : A few temperature difference between top an bottom of the thermoelectric generator is generated electric voltage. Components of an electrical circuit can be connected in various ways. The two simplest of these are called series and parallel and occur so open. Series shows slightly better performance in this study. An installation of cooling sink in the thermoelectric generator system was enhanced the output of power voltage. CONCLUSIONS : In this paper, a basic concepts of thermoelectric power generation is presented and applications of the thermoelectric generator to waste solar energy in road is estimated for green energy harvesting technology. The possibility of usage of thermoelectric technology for road facilities was found under the ambient thermal gradient between two surfaces of the thermoelectric module. An experiment results provide a testimony of the feasibility of the proposed environmental energy harvesting technology on the road facilities.

Study on Electrical Characteristics of FDM Conductive 3D Printing According to Annealing Conditions (FDM 3D 전도성 프린팅 어닐링 조건 따른 전기적 특성 연구)

  • Lee, Sun Kon;Kim, Yong Rae;Yoo, Tae Jung;Park, Ji Hye;Kim, Joo Hyung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.6
    • /
    • pp.53-60
    • /
    • 2018
  • In this paper, the effect of different 3D printing parameters including laminated angle and annealing temperature is observed their effect on FDM conductive 3D printing. In FDM 3D printing, a conductive filament is heated quickly, extruded, and then cooled rapidly. FDM 3D Print conductive filament is a poor heat conductor, it heats and cools unevenly causing the rapid heating and cooling to create internal stress. when the printed conductive specimens this internal stress can be increase electrical resistance and decrease electrical conductivity. Therefore, This experiment would like to use annealing to remove internal stress and increase electrical conductivity. The result of experiment when 3D printing conductive specimen be oven cooling of annealing temperature $120^{\circ}C$ electrical resistance appeared decrease than before annealing. So We have found that 3D printing annealing removes internal stresses and increases the electrical conductivity of printed specimens. These results are very useful for making conductive 3D printing electronic circuit, sensor ect...with electrical conductance suitable for the application.

Analysis of Causes PCB Failure for Collective Protection Equipment and Improvement of Quality (집단보호장비 내의 회로카드조립체 고장 원인 분석 및 품질 향상)

  • Pak, Se-Jin;Ki, Sang-Sik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.5
    • /
    • pp.87-92
    • /
    • 2019
  • This study is the analysis of causes of printed circuit board (PCB) in collective protection equipment failure and quality improvement. The equipment is a component of the weapon system currently in operation and serves to defend against enemy chemical and biological attack as well as heating and cooling functions. However, during operation in the military, fans of condensate assembly failed to operate. The cause of the failure is the burning of PCB. It was found that the parts were heated according to the continuous cooling operation under the high temperature environmental conditions. Accordingly, the electronic components exposed to high temperature were deteriorated and destroyed. To solve this problem, PCB apply to heatsink. The performance test of improved PCB has been completed. Futhermore system compatibility, positive pressure maintenance and noise test were performed. This improvement confirmed that no faults have occurred in PCB so far. Therefore, the quality of the equipment has improved.