• Title/Summary/Keyword: Cooling Behavior

Search Result 523, Processing Time 0.025 seconds

Effects of various cooling methods and drinking water temperatures on reproductive performance and behavior in heat stressed sows

  • Habeeb, Tajudeen;Joseph, Moturi;Abdolreza, Hosseindoust;SangHun, Ha;Jun Young, Mun;YoHan, Choi;SooJin, Sa;JinSoo, Kim
    • Journal of Animal Science and Technology
    • /
    • v.64 no.4
    • /
    • pp.782-791
    • /
    • 2022
  • The purpose of this study is to evaluate the effects of multiple cooling systems and different drinking water temperatures (DWT) on the performance of sows and their hair cortisol levels during heat stress. In this study, the effect of four different cooling systems: air conditioner (AC), cooling pad (CP), snout cooling (SC), and mist spray (MS), and two DWT, namely low water temperature (LWT) and high water temperature (HWT) on 48 multiparous sows (Landrace × Yorkshire; 242.84 ± 2.89 kg) was tested. The experiment is based on the use of eight replicas during a 21-days test. Different behaviors were recorded under different cooling treatments in sows. As a result, behaviors such as drinking, standing, and position change were found to be lower in sows under the AC and CP treatments than in those under the SC and MS treatments. Lying behavior increased under the AC and CP systems as compared with that under the SC and MS, systems. The average daily feed intake (ADFI) in sows and weight at weaning in piglets was higher under the AC, CP, and LWT treatments than under the SC, MS and HWT treatments. Sows subjected to SC and MS treatment showed higher hair cortisol levels, rectal temperature, and respiratory rate during lactation than those under AC and CP treatments. Hair cortisol levels, rectal temperature, and respiratory rate were also higher under the HWT than under the LWT treatment. As per the results of this study, the LWT has no significant effect on any of the behavioral factors. Taken together, the use of AC and CP cooling treatment is highly recommended to improve the behavior and to reduce the stress levels in lactating sows.

Study on the Fire Behavior of Spring Bed Mattress with and Without a Cooling Frame (냉각프레임 설치 유무에 따른 스프링 침대 매트리스의 화재성상에 관한 연구)

  • Seo, Bo-Youl;Park, Kye-Won;Hong, Won-Hwa
    • Fire Science and Engineering
    • /
    • v.32 no.2
    • /
    • pp.24-29
    • /
    • 2018
  • To improve the fire safety of spring bed mattress, a cooling frame including cooling material (water) was made and a cooling frame was installed under the bed mattress or between the bed mattress and bed mattress base; fire tests (real scale) were conducted with or without a cooling frame. Similar fire behavior was observed at the beginning of the test (approximately 3 minutes). Subsequently, rapid fire growth in the mattress without a cooling frame, but with a cooling frame, the decline progressed without growth. The flame spread on the top surface of the bed mattress was similar in the semicircular direction, and the average flame speed velocity was analyzed at approximately 0.005 m/s. The maximum flame height was found to be approximately 2.7 m without a cooling frame, and approximately 1.8 m with a cooling frame installed. In addition, the maximum heat release rate was measured to be approximately 740 kW without a cooling frame, and approximately 400 kW with a cooling frame installed. As a result, the flame height and heat release rate were reduced when the bed mattress was fired through the installed cooling frame.

Study on the Thermal Behavior of Immersion Cooled LED Lighting Engines (담금 냉각되는 LED 조명엔진의 열특성에 대한 연구)

  • Kim, Kyoung Joon
    • Journal of Power System Engineering
    • /
    • v.18 no.3
    • /
    • pp.87-92
    • /
    • 2014
  • This study is aimed at investigating the thermal behavior of immersion-cooled high power LED lighting engines. 3D CFD models have been generated for the numerical analysis. Five cases in terms of the configuration of LED chips have been explored for various passive cooling conditions of the lighting engine, i.e., the natural air convection with a lens, the natural air convection without a lens, the deionized water-immersion cooling condition with a lens. The numerical study reveals that the deionized water-immersion cooled lighting engine has nearly twice better thermal performance than the natural air convection cooled lighting engine containing a lens. The investigation has also demonstrated that the four chips configuration has the better thermal performance than the single chip configuration.

Research on Indoor Thermal Environment and Residents' Control Behavior of Cooling according to Household Type in Apartment (가구 유형에 따른 여름철 공동주택의 실내온열환경과 냉방 조절 행위에 관한 연구)

  • Bae, Chi-Hye;Bae, Nu-Ri;Chun, Chung-Yoon
    • Journal of the Korean housing association
    • /
    • v.19 no.1
    • /
    • pp.89-96
    • /
    • 2008
  • This study measured the thermal environment and residents' control behaviors of cooing according to 3 groups of household type-families with preschool children, families of middle age and families of senior. The object of this study are to fmd the difference of the actual condition of indoor thermal environment and cooling control behavior by age or household type and to develop user oriented climate control system. The results were summarized as follows. When the age of members at household is younger, the indoor mean temperature and temperature that people turned off the air conditioner became lower. These different indoor thermal environment of each group means that younger generation is familiar with cooler from their early age and these early uses of cooler made them prefer cooler condition than family of senior. Therefore, this results show that different indoor thermal environment is influenced by factors such as household type and metabolism difference and so on.

Evaluation of Structural Performance of Natural Draught Cooling Tower according to Shell Geometry using Wind Damage Analysis - Part I : One-shell Geometry (풍하중에 의한 손상해석을 이용한 기하형상에 따른 자연 습식 냉각탑의 구조성능 평가 - Part I : One-shell 기하형상)

  • Lee, Sang-Yun;Noh, Sam-Young
    • Journal of Korean Association for Spatial Structures
    • /
    • v.16 no.3
    • /
    • pp.67-78
    • /
    • 2016
  • Determining of the shape in the process of design for natural draught cooling tower is very important, because the shape of hyperbolic shell is respond sensitively to dynamic behavior of the whole cooling tower against wind load. In engineering practice, the geometric parameters have been determining based on the natural frequency. This study analyses influence of the tower shell geometric parameters on the structural behavior. For three representative models were selected, they were analyzed based on evaluation of damage by means of nonlinear FE-method. As a result, a hyperbolic rotational shell with the small radius overall was the lowest damage index induced by sufficient capacity of the stress redistribution and thus a wind-insensitive structure.

A Integral Model for the Analysis of Strip Temperatures During ROT Cooling in Hot Strip Rolling (ROT 냉각과정의 Strip 두께방향의 열전달 해석)

  • An J. Y.;Hwang S. M.;Sun S. G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.10a
    • /
    • pp.125-128
    • /
    • 2001
  • A finite element-based, integrated process model is presented for coupled analysis of the thermal and metallurgical behavior of the strip occurring on the run-out-table in hot strip rolling. The validity of the proposed model is examined through comparison with measurements. The models capability of revealing the effect of cooling pattern on strip temperatures and the optimal cooling pattern are demonstrated through a series of process simulation. In order to improve strip shape and control temperature history of thickness direction for strip during ROT cooling.

  • PDF

Effect of Cooling Rate on the Behavior of the Embrittlement in Zircaloy-4 Cladding (냉각속도가 지르칼로이-4 피복관의 취성에 미치는 영향)

  • Kim, Jun Hwan;Lee, Myoung Ho;Choi, Byoung Kwon;Jeong, Yong Hwan
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.18 no.2
    • /
    • pp.112-118
    • /
    • 2005
  • Study was focused on the effect of the cooling rate on the embrittlement behavior of Zircaloy-4 cladding simulated Loss Of Coolant Accident (LOCA) environment. Claddings were oxidized at given temperature and given time followed by various water quenching in the range of $0.6^{\circ}C$ and $100^{\circ}C$ per second. Cladding failed after water quenching above the threshold oxidation. Threshold oxidation was decreased as the cooling rate increased, which is due to the matensite structure formed during fast cooling rate.

Ultimate behavior of reinforced concrete cooling tower: Evaluation and comparison of design guidelines

  • Noh, Hyuk-Chun;Choi, Chang-Koon
    • Structural Engineering and Mechanics
    • /
    • v.22 no.2
    • /
    • pp.223-240
    • /
    • 2006
  • Taking into account the geometrical and material nonlinearities, an ultimate behavior of reinforced concrete cooling tower shell in hyperbolic configuration is presented. The design wind pressures suggested in the guidelines of the US (ACI) and Germany (VGB), with or without the effect of internal suction, are employed in the analysis to examine the qualitative and quantitative characteristics of each design wind pressure. The geometrical nonlinearity is incorporated by the Green-Lagrange strain tensor. The nonlinear features of concrete, such as the nonlinear stress-strain relation in compression, the tensile cracking with the smeared crack model, an effect of tension stiffening, are taken into account. The biaxial stress state in concrete is represented by an improved work-hardening plasticity model. From the perspective of quality of wind pressures, the two guidelines are determined as highly correlated each other. Through the extensive analysis on the Niederaussem cooling tower in Germany, not only the ultimate load is determined but also the mechanism of failure, distribution of cracks, damage processes, stress redistributions, and mean crack width are examined.

Ultimate Behavior of Reinforced Concrete Hyperbolic Cooling Tower (R/C 쌍곡 냉각탑의 극한 거동)

  • Min, Chang Shik;Kim, Saeng Bin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.12 no.4
    • /
    • pp.59-70
    • /
    • 1992
  • Inelastic nonlinear behavior of a hyperbolic cooling tower under wind loading is studied using a finite element program developed on a Cray Y-MP. Convergence studies for the elastic and inelastic analyses are performed using three mesh models. It is shown that the mesh convergence plays an important role in accurately predicting the inelastic behavior of a cooling tower. Even though the cooling tower resists the applied forces through membrane stresses, it is found that the bending stresses play an important role in the failure and behavior of the cooling tower. The present analysis gives a shape factor of 1.48, which indicates a significant redistribution of meridional stresses. It is further evidenced by the distribution of meridional reinforcement yielding which reaches up to $30^{\circ}$ from the windward meridian. The present practice of using elastic analysis for calculating the design stresses appears to be at least safe and conservative. A more comprehensive study should lead to conclusions that would allow use of a higher-than-one shape factor, thus requiring less meridional reinforcement than the present design method does.

  • PDF

Effects of Ni addition on continuous cooling transformation behavior of low carbon HSLA steels (저탄소${\cdot}$저합금 강의 연속 냉각 변태에 미치는 Ni의 영향)

  • Kang J. S.;Jun J. H.;Park C. G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.10a
    • /
    • pp.456-459
    • /
    • 2005
  • Continuous cooling transformation behaviors were studied fur low carbon HSLA steels containing three different level $(1\~3\;wt\%)$ of Ni addition. Thermo-mechanical processing (TMP) simulations to construct continuous cooling (CCT) diagram were conducted by using Gleeble system. As cooling rate increased, pearlite, granular bainite, acicular ferrite, bainitic ferrite and lath martensite were transformed from deformed austenite. Fully bainitic microstructure were developed at all cooling rate condition in high Ni containing steel due to hardenability increasing effects of Ni. Ni also influenced the transformation kinetics. At the slowest cooling rate of $0.3^{\circ}C/s$, transformation delayed with decreasing Ni contents because of the diffusion of substitutional alloy elements. However, cooling rate slightly increased to $1^{\circ}C/s$, transformation kinetics accelerated with decreasing Ni contents because nucleation of bainite was sluggish due to hardening of residual austenite.

  • PDF