• 제목/요약/키워드: Cooling Air Velocity

검색결과 232건 처리시간 0.023초

Thermal and Flow Analysis in a Proton Exchange Membrane Fuel Cell

  • Jung, Hye-Mi;Koo, Ja-Ye
    • Journal of Mechanical Science and Technology
    • /
    • 제17권9호
    • /
    • pp.1358-1370
    • /
    • 2003
  • The effects of anode, cathode, and cooling channels for a Proton Exchange Membrane Fuel Cell (PEMFC) on flow fields have been investigated numerically. Continuous open-faced fluid flow channels formed in the surface of the bipolar plates traverse the central area of the plate surface in a plurality of passes such as a serpentine manner. The pressure distributions and velocity profiles of the hydrogen, air and water channels on bipolar plates of the PEMFC are analyzed using a two-dimensional simulation. The conservation equations of mass, momentum, and energy in the three-dimensional flow solver are modified to include electro-chemical characteristics of the fuel cell. In our three-dimensional numerical simulations, the operation of electro-chemical in Membrane Electrolyte Assembly (MEA) is assumed to be steady-state, involving multi-species. Supplied gases are consumed by chemical reaction. The distributions of oxygen and hydrogen concentration with constant humidity are calculated. The concentration of hydrogen is the highest at the center region of the active area, while the concentration of oxygen is the highest at the inlet region. The flow and thermal profiles are evaluated to determine the flow patterns of gas supplied and cooling plates for an optimal fuel cell stack design.

건물 적용을 위한 태양열 집열기 기능을 갖는 BIPV 시스템의 기초적 연구 (A Fundamental Study of BIPV System Functioned as Solar Collector for Building Application)

  • 민성혜;서승직
    • 한국태양에너지학회 논문집
    • /
    • 제27권1호
    • /
    • pp.91-98
    • /
    • 2007
  • Perimeter zone is one of the weakest area in buildings and it makes an increase of heating and cooling loads, in addition to condensation or discomfort with cold-draft to residents in winter. Because of this, it needs to be reinforced by active systems. However, they use fossil fuel, and ultimately greenhouse effect is urged. Thus, we proposed BIPV system functioned as solar collector which can substitute active system. As an fundamental stage, heat balance equation in steady-state by Fortran was used not only, in winter for pre-heating effect and electric power capacity during the day, but also in summer, for the latter during the day and sky radiation effect during the night. Especially, we should have considered shading on PV by IES Suncast, since even a little bit of it makes the efficiency too low for the PV modules to work. As a result, in summer day, the PV panel should be tiled in 70 degrees to gain the most electric power. Moreover, we could verify that this model makes higher temperature and heat flux under 0.02 m/s. On the other hand, the PV had the high efficiency with high velocity because of cooling effect behind the PV. Therefore, we should regard the air current distribution later on.

아파트 평면형에 따른 여름철 맞통풍 효과 비교 (A Comparative Study on the Cross-Ventilation Effect by the Floor Plan Type of Apartment House during Summer)

  • 김정민;최윤정
    • 한국주거학회:학술대회논문집
    • /
    • 한국주거학회 2005년도 추계학술대회 논문집
    • /
    • pp.301-306
    • /
    • 2005
  • The purpose of this study is to make clear the cross-ventilation effect by floor plan type in apartment house during summer. The questionnaire survey was carried out during the 26$^{th}$ of August ${\sim}$ the 4$^{th}$ of September 2004. The respondents were 174 residents living in two subject apartment estates. One subject estate (we call A estate) was consisted apartment houses having cross-ventilation floor plan. The other subject estate (we cail B estate) was constructed apartment houses having ordinary floor plan. The field measurements of indoor thermal elements reflecting natural cooling effect by cross-ventilation were carried out at A house in A estate and at B house in B estate. The measurements in two subject houses were taken on simultaneously the 27$^{th}$ of August. The residents living in A apartment estate planed cross-ventilation type show positive responses on thermal sensation and airflow sensation. The averages indoor temperature and air velocity in the A house were 0.9 $^{\circ}$C lower and 0.29 m/s higher than the B house. Therefore, it was found that indoor thermal environment during summer in the house having cross-ventilation floor plan maintained more comfortable than the house having ordinary floor plan by natural cooling effect of cross-ventilation.

  • PDF

전산유체역학을 이용한 단일 송풍기가 적용된 공냉식 연소설비의 효율개선 (Enhancement of combustion efficiency of a air-cooled combustor system with single F.D. Fan Using CFD)

  • 김민철;손병현;이재정;박흥석
    • 한국산학기술학회논문지
    • /
    • 제22권6호
    • /
    • pp.460-468
    • /
    • 2021
  • 본 연구는 multi fan 방식의 "공랭식 연소설비"의 공정관리상의 문제점을 single F.D. fan 으로 대체하여 개선시키기 위해 CFD 진행하였고, 연소로 내 유동조건 변화를 분석하여 문제점을 확인하였다. 이를 개선하기 위해 연소공기 주입구조를 변경하였고, 구조 변화에 따른 연소효율 개선을 수치해석으로 평가하였다. 또한 실제 연소설비에 수치해석결과를 반영하여 구조개선을 한 후 개선 전·후의 연소효율을 실험적으로 측정하였다. 먼저 기존 Single F.D fan 이 적용된 연소설비에 대한 수치해석을 통해, 2개의 유로로 공급되는 연소공기가 각 유로의 마찰력 차이와 압력의 변화로 인해 연소로 내에서 공급비율이 불규칙하게 되어 선회방식의 연소조건을 위한 축 형태의 난류형성이 어려움을 확인하였다. 이를 개선하기 위해서 연소로에 주입하는 공기 공급 방식을 두 가지로 나누어 수치해석을 하였다. 첫 번째 방식은 연소공기를 외벽에서 180 ~ 360° 회전 후 예열된 연소공기가 주입되는 구조에 대하여 검토하였고, 두 번째는 연소로 내에는 선회할 수 있는 베인(vane) 구조를 적용하여 연소로 밖에서 1차 열교환 후 연소로 내부에 접선방향으로 연소공기가 주입되는 구조에 대하여 검토하였다. 그 결과, single F.D. fan을 가진 공랭식 연소로에 선회방식으로 공기를 주입할 경우, 연소로 외벽의 냉각과 연소로 내부의 완전혼합 유지를 위해 이중 냉각벽을 가지는 덕트 구조를 적용하는 것이 연소조건을 최적화하는데 바람직한 것으로 나타났으며, 실제 운영중인 설비에 적용하여 개선 전·후의 연소효율을 비교한 결과 연소효율이 개선되는 것을 확인할 수 있었다.

비활성 화산지역의 지중공기열원 에너지 이용에 관한 실험적 연구 (An Experimental Study on the Availability of Underground Air Energy Source in Non-Activity Volcanic Island)

  • 김용환;박성식;김우중;김남진;현명택
    • 한국태양에너지학회 논문집
    • /
    • 제34권5호
    • /
    • pp.73-80
    • /
    • 2014
  • This study introduces and analyzes the geothermal energy availability in Non-active volcanic region. Jeju island in Korea is situated in non-active volcanic region. The island is composed of rock with high pore and clinker, scoria geological layer formed by volcanic activity about two million ago. Volcanic geological layers with porous characteristics have air, vapor, water and a underground structure through which air or water can move easily. For this reason, it is probable that the mechanism of energy acquisition is by convective heat transfer. For this presumption, the availability of underground air as energy source has been studied here through theoretical analysis and experimental data. The energy output of our system ranged from 2,485,076 kJ/day to 4,060,978 kJ/day monitored using variable velocity air flow controller. Our system has capability to be a reliable energy source irrespective of environmental changes. Consequently, underground air can be utilized for energy source and provide the optimal design of heating/cooling system.

Numerical simulation of natural convection around the dome in the passive containment air-cooling system

  • Chunhui Dong;Shikang Chen;Ronghua Chen;Wenxi Tian;Suizheng Qiu;G.H. Su
    • Nuclear Engineering and Technology
    • /
    • 제55권8호
    • /
    • pp.2997-3009
    • /
    • 2023
  • The Passive containment Air-cooling System (PAS) can effectively remove the decay heat of the modular small nuclear reactor after an accident. The details of natural convection around the dome, which is a key part of PAS, were investigated numerically in the present study. The thermal dynamics around the dome were studied through the temperature, pressure and velocity contours and the streamlines. Additionally, the formation of the buoyant plume at the top of the dome was investigated. The results show that with the increase of Ra, the lift-off point moves toward the bottom of the dome, and the eddy under the buoyant plume grows larger gradually, which enhances the heat transfer. And the heat transfer along the dome surface with different truncation angles was investigated. As the angle increases, the heat transfer coefficient becomes stronger as well. Consequently, a newly developed heat transfer correlation considering the influence of truncation angle for the dome is proposed based on the simulated results. This study could provide a better understanding of natural convection around the dome of PAS and the proposed correlation could also offer more predictive value in the improvement of nuclear safety.

에어버블 차단막을 이용한 발전플랜트 피해 저감 방안 연구 (The Damage Reduction Strategy for Power Plant Using Air Bubble Barrier)

  • 장형준;이호진;이효상;황명규
    • 한국방재안전학회논문집
    • /
    • 제11권1호
    • /
    • pp.1-5
    • /
    • 2018
  • 발전소는 선진 산업사회에서의 중요한 사회기반시설이다. 이러한 발전소가 해초, 물고기, 해파리, 새우 등과 같은 해양생물의 유입으로 정지 될 경우, 사회-경제적으로 심각한 문제가 발생하기도 한다. 따라서, 발전소 취수구 유입구 부분의 해양생물 침투로 인한 발전소 가동이 정지되는 것을 방지하기 위하여, 에어버블 차단막 기술이 활용되고 있다. 본 연구에서는 에어버블 차단막 기술의 기초연구인 에어버블의 거동을 분석하기 위하여 수직형 에어버블 실험장치를 개발 및 에어버블수직 거동 특성을 분석하였다. 에어버블 수직 거동 특성을 분석하기 위하여 수직형 에어버블 실험 장치를 이용하여 에어 분사량에 따른 수심별 에어버블의 상승 속도를 측정하였으며, 실험결과를 바탕으로 수심구간별 에어버블 상승속도 경험식을을 제시하였다. 제시된 경험식은 향후 에어버블 차단막 설계의 기초자료로 활용될 것이며, 발전시설 운영 부분에서의 안정성을 확보하는 데 크게 기여할 것으로 기대된다.

유동과 열전달 특성을 고려한 수평 전자회로 기판의 설계조건에 관한 수치적 연구 (A numerical study of design condition for horizontal electronic circuit boards flow and heat transfer characteristics)

  • 전운학;이행남;김현모
    • 오토저널
    • /
    • 제14권2호
    • /
    • pp.76-87
    • /
    • 1992
  • Flow and heat transfer characteristics in a horizontal electronic circuit board are studied numerically. The board has the arrays of heated blocks and the spaces between the plates and blocks are changed. Air in used as cooling fluid, of which prandt1 number is 0.7. The velocity distributions, temperature distributions, Nusselt numbers and dimensionless friction factors are obtained on the spaces between the plates and the blocks, for the cases of Rayleigh number, 0 and 10$^{5}$ . When Rayleigh number is so large, such as 10$^{5}$ , that the effect of bouyancy is not negligible, fluid friction and heat transfer is increased more than those of forced convection. This may be caused by the generation of secondary flow on the cross section of primary flow. The effect of bouyancy is of the most efficient, when the space of blocks is about block-width and the space of plates is about 1.7 times of block-height.

  • PDF

CALCULATION OF FLOW FIFLD IN A CHANNEL SUBJECTED TO PRESSURE-BASED BOUNDARY CONDITION

  • 박종흥;이재헌
    • ETRI Journal
    • /
    • 제10권4호
    • /
    • pp.118-126
    • /
    • 1988
  • A numerical analysis was performed for the flow field in the vertical channels consist of dummy cards and active cards to define the hydrodynamic role of dummy card which is often installed in electronic equipment between active cards to control the cooling air distribution. For a given velocity profile at the inlet and a pressure-based boundary condition at the outlet of the computation domain, the percentage of the flow rate distribution through active channel and dummy channel formed by an active card and dummy card, respectively, were investigated. As a result of present analysis, the pecentage of flow rate through active channel increases quadraticaly with the increase of the ratio of the height of barrier to the width of the dummy channel.

  • PDF

다수의 장애물을 가진 유동채널에서의 강제 대류에 관한 연구 (Forced Convection in a Flow Channel with Multiple Obstacles)

  • 남평우;조성환
    • 태양에너지
    • /
    • 제9권1호
    • /
    • pp.62-69
    • /
    • 1989
  • This analysis is to investigate the influence of inflow angle when cooling air flows into PC (Printed Circuit) board channels. Flow between PC board channels with heat generating blocks is assumed laminar, incompressible, two-dimensional. Geometric parameters (block spacing (S), block height (H), block width (W) and channel height (L)) are held fixed. Inflow angle variations are $-10^{\circ},\;0^{\circ},\;10^{\circ}$, where uniform heat flux per unit axial length Q (W/m) from heated block surfaces is generated. The governing equations for velocity and temperature are solved by SIMPLE (Semi-Implicit Method Pressure for Linked Equation) algorithm. Nusselt number on each block surfaces is analyzed after a numerical calculation result. The result shows that the assumption on parallel inflow (inflow angle to channel, $0^{\circ}$) to PC board channels can be used without large error even when inflow' angle is varied.

  • PDF