• Title/Summary/Keyword: Cooling Air Velocity

Search Result 232, Processing Time 0.025 seconds

Performance Simulation of a R744 Refrigeration System in a Refrigerator Truck under a Frost Condition (착상조건에서 R744 냉매 적용 탑차용 냉장시스템의 성능해석)

  • Kim, Sang Hun;Myoung, Chi Wook;Cho, Hong Hyun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.9
    • /
    • pp.499-505
    • /
    • 2013
  • R744 has been appropriated for substitute refrigerant, because of its high stability, and environment-friendly nature as a natural refrigerant. To analyze the cooling performance of a refrigeration system in a refrigerator truck using R744 according to the blocking ratio, an analytical model of the refrigeration system was developed under frost conditions, using EES. The performance of the refrigeration system was predicted with the indoor and outdoor air temperature, outdoor air velocity, and compressor speed. As a result, the system performance decreased, with the increase of frost growth. When the blocking ratio was 40.4% in the basic condition, the refrigeration capacity was decreased by 27.1%, compared to the non-frost condition.

An Experimental Study on the Atomization Characteristics of the Rotary Cup Atomizer (회전컵 무화기의 미립화 특성에 관한 실험적 연구)

  • Jin, S.B.;Cho, D.J.;Yoon, S.J.
    • Journal of ILASS-Korea
    • /
    • v.6 no.4
    • /
    • pp.14-21
    • /
    • 2001
  • Rotary atomizer is widely used in practical application ranging from combustion, cooling, spray drying, agriculture, chemical system. Rotary cup atomizer has some advantages such as extreme versatility and liquid atomization successfully varying widely in viscosity. In rotary atomization, the feed liquid is centrifugally accelerated to high velocity and the liquid extends over the rotating surface as a thin film before being discharged into an atmosphere. The degree of rotary atomization depends upon peripheral speed, feed rate, liquid properties and atomizer design. An important asset is that thickness and uniformity of the liquid sheet can readily be controlled by regulating the liquid flow rate and the rotational speed. LDPA(Laser Diffraction Particle Analyser) and image aquisition system are used to measure drop size distribution and spray pattern. The atomization characteristics of the rotary cup atomizer is investigated experimentally by varing the liquid feed rate, rotary cup speed and air velocity for atomization. As a results, the effect of air velocity on the atomization characteristics such as drop size and spray uniformity is considerably greater than variation of those with liquid feed rate.

  • PDF

The Thermocapillary Effect on Pure Conduction Mechanism in a Closed Square Cavity (수평 사각밀폐공간내의 전도열전달 기구에서 열모세관효과)

  • Yu, Jae-Bong;An, Do-Won;Yoo, Joo-Sik;Eom, Yong-Kyoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.11 s.242
    • /
    • pp.1209-1219
    • /
    • 2005
  • In a closed square cavity filled with a liquid, a cooling horizontal upper wall and a heating lower wall, the flow isn't generated under the ground-based condition when Rayleigh number is lower than 1700. In this mechanism, Ra=1534, Temperature and velocity fields near an air-bubble in silicon-oil under a cooled upper wall were investigated. Temperature and velocity fields is visualized using the thermo-sensitive liquid-crystal and light sheet visualization technique. The quantitative analysis fer the temperature and the flow fields were carried out by applying the image processing technique to the original data. The symmetry shape of two vortexes near an air bubble was observed. As the bubble size increased, the size of vortex and the magnitude of velocity increased. In spite of elapsed time, a pair of vortexes was the unique and steady-state flow in a square cavity and wasn't induced to the other flow in the surround region.

Study on Performance Evaluation of Oscillating Heat Pipe Heat Exchanger for Low Temperature Waste Heat Recovery (저온 폐열 회수용 진동형 히트 파이프 열교환기의 성능 평가에 관한 연구)

  • 안영태;이욱현;김정훈;김종수
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.5
    • /
    • pp.368-376
    • /
    • 2001
  • Performance of heat exchanger was evaluated to heat exchanger using oscillating heat pipe for waste heat recovery of low temperature. Oscillating heat pipe used in this study was formed to the closed loop of serpentine shapes using copper tubes. Heat exchanger was formed to shell and tube type and composed of low finned tube. R-22 and R-141b were used to the working fluids of tube side and their charging ratio was 40%. And, water was used to the working fluid of shell side. As the experimental parameters, the inlet temperature difference of heating and cooling part of secondary fluid and the mass velocity of secondary fluid were used. The mass velocity of secondary fluid was changed from 90 kg/$m^2s\; to\;190 kg/m^2$s from the experimental results, heat recovery rate was linearly increased to the increment of the mass velocity of secondary fluid and the inlet temperature difference of secondary fluid. Finally, the performance of heat exchanger was evaluated by using $\varepsilon$-NTU method. It was found that NTU was about 1.5 when effectiveness was decided to 80%.

  • PDF

An Experimental Study on Frost Generation Mechanism from Evaporator Tube in Air Conditioning System (공조용 열교환기 증발관에서의 서리 발생에 관한 메커니즘의 실험적 연구)

  • Park Sang-Kyun;Oh Cheal
    • Journal of Navigation and Port Research
    • /
    • v.30 no.1 s.107
    • /
    • pp.113-117
    • /
    • 2006
  • The object qf this experiment was the evaluation of the growth rate of frost layer conditioned by inlet air's velocity, temperature and relative humidity on the copper tube in evaporator. In this experiment, the inlet air's velocity were $0.3^m/_s,\;0.6^m/_s,\;0.9^m/_s,$ temperature were $15^{\circ}C,\;20^{\circ}C,\;25^{\circ}C$ and the variation of relative humidity was $70\%~90\%$. And the brine temperature flowing through the copper tubes was kept $-15{\circ}C$ because generally cooling temperature range is constantly $-15^{\circ}C$ in the heat exchanger for air conditioning system It was found that the amount of frost generation increased so that the relative humidity, velocity and temperature of supply air increased.

Study on Simulation of Water Cooling Heat Exchanger for Small Marine Diesel Engine (소형 선박용 디젤엔진의 수냉식 열교환기 해석 연구)

  • Yang, Young-Joon;Sim, Han-Sub
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.6
    • /
    • pp.201-207
    • /
    • 2012
  • This study was carried out to improve the design of heat exchanger for small marine diesel engine. As air pollutants emitted from small marine diesel engine become international problem, IMO(International Marine Organization) tried to establish severe regulations for NOx reduction. The formation of NOx is affected by cooling system, for instance, such as intercooler, heat exchanger, exhaust manifold, and therefore cooling systems are one of essential parts for design of small marine diesel engine. In this study, heat exchanger for small marine diesel engine was modeled and simulated using CATIA V5R19 and ANSYS FLUENT V.13. Thermal flow simulation for heat exchanger was performed to find the optimal design. As the results, maximum velocity of engine coolant in shell inside was 9.1m/s and it was confirmed that outlet temperature and temperature drop for engine coolant could be calculated by simulating proportional relations of temperature between engine coolant and sea water.

A Study on the Flow Characteristics of Desktop Personal Computer by In-Out Fan (흡.배기 팬에 의한 Desktop Personal Computer 내부의 유동특성에 관한 연구)

  • Lee, Haeng-Nam;Park, Gil-Moon;Jung, Han-Byul
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.6
    • /
    • pp.665-671
    • /
    • 2007
  • The purpose of this study is to find out a flow characteristics required by the design of a computer case and to provide information about the preliminary data of cooling efficiency of CPU and a flow inside of a case. We examined a flow characteristic-suction a tracing particle occurred from a surge tand installed at an inlet into a computer case and moving it to a exit duct-experimentally by using PIV. The experimental device was consists of a fan inflowing and discharging the air into the computer case and a slot installed with a CPU cooling ran add-on, and analyzed the data of Re-stress distribution, velocity distribution, and kinetic energy distribution. This research will make a great contribution to improvement of the efficiency and performance of notebook, workstation, server, and all the design of electronic devices using large scale integrated(LSI) as well as usual computers.

An Experimental Study on the Effect of Ventilation Velocity on the Burning Rate in Longitudinal Ventilation Tunnel Fires (종류식 배연 터널 화재시 배연속도가 연소율에 미치는 영향에 대한 실험적 연구)

  • Yang Seung-Shin;Ryou Hong-Sun;Choi Young-Ki;Kim Dong-Hyeon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.10
    • /
    • pp.914-921
    • /
    • 2005
  • In this study, the 1/20 reduced-scale experiment using Froude scaling were conducted to investigate the effect of longitudinal ventilation velocity on the burning rate in tunnel fires. The methanol pool fires with heat release rate ranging from 2.02 kW to 6.15 kW and the n-heptane pool fires with heat release rate ranging from 2.23 kW to 15.6 kW were used. The burning rate of fuel was obtained by measuring the fuel mass at the load cell. The temperature distributions were observed by K-type thermocouples in order to investigate smoke movement. The ventilation velocity in the tested tunnel was controlled by inverter of the wind tunnel. In methanol pool fire, the increase in ventilation velocity reduces the burning rate. On the contrary in n-heptane pool fire, the increase in ventilation velocity induces large burning rate. The reason for above conflicting phenomena lies on the difference of burning rate. In methanol pool fire, the cooling effect outweighs the supply effect of oxygen to fire plume, and in n-heptane pool vice versa.

A study on the action mechanism of internal pressures in straight-cone steel cooling tower under two-way coupling between wind and rain

  • Ke, S.T.;Du, L.Y.;Ge, Y.J.;Yang, Q.;Wang, H.;Tamura, Y.
    • Wind and Structures
    • /
    • v.27 no.1
    • /
    • pp.11-27
    • /
    • 2018
  • The straight-cone steel cooling tower is a novel type of structure, which has a distinct aerodynamic distribution on the internal surface of the tower cylinder compared with conventional hyperbolic concrete cooling towers. Especially in the extreme weather conditions of strong wind and heavy rain, heavy rain also has a direct impact on aerodynamic force on the internal surface and changes the turbulence effect of pulsating wind, but existing studies mainly focus on the impact effect brought by wind-driven rain to structure surface. In addition, for the indirect air cooled cooling tower, different additional ventilation rate of shutters produces a considerable interference to air movement inside the tower and also to the action mechanism of loads. To solve the problem, a straight-cone steel cooling towerstanding 189 m high and currently being constructed is taken as the research object in this study. The algorithm for two-way coupling between wind and rain is adopted. Simulation of wind field and raindrops is performed with continuous phase and discrete phase models, respectively, under the general principles of computational fluid dynamics (CFD). Firstly, the rule of influence of 9 combinations of wind sped and rainfall intensity on flow field mechanism, the volume of wind-driven rain, additional action force of raindrops and equivalent internal pressure coefficient of the tower cylinder is analyzed. On this basis, the internal pressures of the cooling tower under the most unfavorable working condition are compared between four ventilation rates of shutters (0%, 15%, 30% and 100%). The results show that the 3D effect of equivalent internal pressure coefficient is the most significant when considering two-way coupling between wind and rain. Additional load imposed by raindrops on the internal surface of the tower accounts for an extremely small proportion of total wind load, the maximum being only 0.245%. This occurs under the combination of 20 m/s wind velocity and 200 mm/h rainfall intensity. Ventilation rate of shutters not only changes the air movement inside the tower, but also affects the accumulated amount and distribution of raindrops on the internal surface.

A Study on the Convective Heat Transfer in a Regenerative Ice Energy System by a Bundle of the Heat-pipes. (히이트파이프 다발을 이용한 냉축열시스템에서의 대류열전달에 관한 연구)

  • 권형정;김경석;김경근
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.14 no.4
    • /
    • pp.57-66
    • /
    • 1990
  • In the design of an electric power plant, the capacity to meet the peak load demand is one of the important factors to be considered. This peak load usually occurs when the most of the cooling air conditioning systems are being operated during daytime in summer season, which inevitably entails the construction of an additional electric power plant. This study is aimed to carry out a basic experiment for the development of a cooling air conditioning system using the ice energy by the surplus electric power during the night-time. The experimental apparatus consists of four major parts; (1) the heating section consisting of the air duct and I.D. fan, (2) the cold section with the ice chamber, (3) the bundle of heat pipes made in a form of the staggered arrangement with ${C_y}/{d_o}$=2.0 and ${C_x}/{d_o}$=1.73, (4) the refrigerator system to cool down the ice chamber. This study involves an intensive experiment concerning the convective heat transfer of the air flow surrounding the bundle of heat pipes. This major experimental parameters are the amount of working fluid, the velocity of air and the working temperature. The major findings of the present study are as follows; (1) The optimum amount of the working fluid necessary for the horizontal heat pipes is much more than that for the vertical type. (2) The convective heat transfer coefficients of the air are coincided with the empirical equations of Grimson and ${\breve{Z}ukauskas}$. (3) The equation of the mean heat transfer coefficient obtained in the present study is ${N_um}=0.32 {Re_max^{0.63}}$.

  • PDF