• 제목/요약/키워드: Cooling Air Velocity

검색결과 232건 처리시간 0.025초

Experimental Study of Air-cooled Condensation in Slightly Inclined Circular Tube (경사진 원형관에서의 공냉응축에 관한 실험적 연구)

  • Kim, Dong Eok;Kwon, Tae-Soon;Park, Hyun-Sik
    • The KSFM Journal of Fluid Machinery
    • /
    • 제19권4호
    • /
    • pp.29-34
    • /
    • 2016
  • In this study, the experimental investigation of air-cooled condensation in slightly inclined circular tubes with and without fins has been conducted. In order to assess the effects of the essential parameters, variable air velocities and steam mass flow rates were given to the test section. The heat transfer performance of air-cooled condensation were dominantly affected by the air velocity, however, the increase of the steam mass flow rate gave relatively weaker effects to total heat transfer capability. And in the experimental cases with the finned tube, the total heat transfer rate of the finned tube was significantly larger than that of the flat tube. From those results, it can be confirmed that the most important parameter for air-cooled condensation heat transfer is the convective heat transfer characteristics of air. Therefore, for the well-designed long-term cooling passive safety system, the consideration of the optimal design of the fin geometry is needed, and the experimental and numerical validations of the heat transfer capability of the finned tube would be required.

Effect of Cooling Velocity on the Microstructures and Mechanical Properties of Si, Mn, V added HSLA Steels (Si, Mn, V이 첨가된 비조질강의 미세조직 및 기계적 성질에 미치는 냉각속도의 영향)

  • Park, Yon-Seo;Choi, Chang-Soo;Chung, In-Sang
    • Journal of the Korean Society for Heat Treatment
    • /
    • 제14권5호
    • /
    • pp.267-274
    • /
    • 2001
  • Microalloyed steels, which substituted by conventional quenched and tempered steels, have been used in a wide variety of structural and engineering application. The main driving force for preference of MA steels is a cost reduction which can be achieved by an omission of heat treatment. In this study, low carbon martensitic MA steels in 0.18C-0.30(0.60)Si-2.00(1.80)Mn-0.05S-1.5Cr-0.05(0.10)V-0.015Ti(wt%) were investigated to know the effects of cooling method on the mechanical properties and microstructures of Si, Mn, V added microalloyed steel at different reheating temperature. Microstructure of oil quenched steels which were comprised lath martensite, auto-tempered martensite and retained austenite, had more various structure than that of air cooled steel made of mainly bainite. Therefore, oil quenched steels, which had more various microstructure, had better strength-toughness balance compare to air cooled steels. In the impact test, fracture mode of oil quenched steels, which showed good mechanical properties, were dimple, but that of air cooled steels were cleavage.

  • PDF

A Study on Cross Type Heat Exchanger Using Element Method (직교류형 열교환기에 대한 엘리멘트를 이용한 열정산 방법에 관한 연구)

  • Jung, H.H.;Shin, H.T.;Kim, K.H.;Lee, C.S.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • 제3권2호
    • /
    • pp.114-122
    • /
    • 1991
  • A thermal analysis method taking into account energy balance in each elements of heat exchanger was introduced. This method has a merit in predicting the temperature field over the heat exchanger in detail. To verify this method, the results were compared with the published ones. The thermal analysis of the radiator in vehicles was also conducted and the results were compared with experimental ones. It is concluded that this method can be used in thermal analysis with relatively small error. When the velocity profile of inlet air is not uniform, the outlet temperature of cooling water is higher than that of uniform velocity profile.

  • PDF

Pressure Drop and Refrigerant-Entrainment Characteristics of the Eliminators used in Absorption Chillers (흡수식 냉동기용 엘리미네이터의 압력손실 및 액적유입 특성)

  • 정시영;류진상;이상수;이정주
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • 제15권2호
    • /
    • pp.109-115
    • /
    • 2003
  • The performance of two vertical-blade eliminators (V1, V2) and two horizontal-blade ones (H1, H2) for absorption chillers were tested in terms of pressure drop and refrigerant entrainment. The test was carried out using a wind tunnel with a cross section of 300 mm$\times$300 mm. The pressure drop of four eliminators tested was found to be in the rage of 1.0~2.7mm $H_2O$ at the face velocity of 2m/s. In the refrigerant entrainment test the vertical-blade eliminators showed much better performance than the horizontal-blade ones. The horizontal-blade eliminators showed satisfactory results at the air velocity of 2m/s but exceeded the limit value at 3 m/s. Since the cooling capacity of a machine is lowered by about 2.5% at the pressure drop of 1 m $H_2O$, more researches are required to reduce the pressure drop in the eliminator.

Numerical Analysis on the Condensation Heat Transfer and Pressure Drop Characteristics of the Flat Tube-Bundle Heat Exchanger (편평관군 열교환기에서의 응축 열전달 및 압력강하 특성해석)

  • Park, Byung-Kyu;Lee, Joon-Sik
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • 제17권12호
    • /
    • pp.1177-1184
    • /
    • 2005
  • A numerical analysis was carried out on the heat and mass transfer, and pressure drop characteristics of the modular tube bundle heat exchanger. The finite volume method with a $k-\varepsilon$ turbulence model was used for the analysis. Due to condensation, the total heat transfer rate is observed about $4\~8\%$ higher than that on dry surfaces. Total heat transfer rate increases with increase in the velocity, temperature and relative humidity of incoming air. It also increases with decreasing the aspect ratio of heat exchanger tube. The inlet velocity of cooling water has little effect on the total heat transfer when the other conditions are fixed.

Study on Performance Evaluation of Oscillating Heat Pipe Heat Exchanger for Low Temperature Waste Heat Recovery

  • Bui, Ngoc-Hung;Kim, Ju-Won;Jang, In-Seung;Kang, Jeong-Kil;Kim, Jong-Soo
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제11권2호
    • /
    • pp.73-81
    • /
    • 2003
  • The performance of heat exchanger using oscillating heat pipe (OHP) for low temperature waste heat recovery was evaluated. OHP used in this study was made from low finned copper tubes connected by many turns to become the closed loop of serpentine structure. The OHP heat exchanger was formed into shell and tube type. R-22 and R-141b were used as the working fluids of OHP with a fill ratio of 40 vol.%. Water was used as the working fluid of shell side. As the experimental parameters, the inlet temperature difference between heating and cooling water and the mass velocity of water were changed. The mass velocity of water was changed from 30 kg/$m^2$s to 92 kg/$m^2$s. The experimental results showed that the heat recovery rate linearly increased as the mass velocity and the inlet temperature difference of water increased. Finally, the performance of OHP heat exchanger was evaluated by $\varepsilon$-NTU method. It was found that the effectiveness would be 80% if NTU were about 1.5.

A Study on the Heat Transfer Perfomance of Dimpled Double Pipe Heat Exchanger on a Fuel Cell (연료전지용 딤플형 이중관열교환기의 열전달 성능에 관한 연구)

  • CHO, Dong-Hyun
    • Journal of Fisheries and Marine Sciences Education
    • /
    • 제27권6호
    • /
    • pp.1727-1733
    • /
    • 2015
  • In the present study, the heat transfer performance of dimpled double-pipe heat exchangers for fuel cells that are utilized as cooling systems of fuel cells was studied. In addition, to comparatively analyze the heat transfer performance of dimpled double-pipe heat exchanger for fuel cells, plain double-pipe heat exchangers were also studied. Experimental results were derived on changes in the Reynolds numbers of the cooling water flowing in dimpled and plain double-pipe heat exchangers and changes in the heat flux of the air. Thereafter, to verify the reliability of the experimental results, the theoretical overall heat transfer coefficients and the experimental overall heat transfer coefficients were comparatively analyzed and the following results were derived. The heat transfer rate lost by the hot air and that of the heat transfer rate obtained by the cooling water were well balanced. The experiments of plain double-pipe heat exchangers and dimpled double-pipe heat exchangers were conducted under normal conditions and the theoretical overall heat transfer coefficient and the experimental overall heat transfer coefficient coincided well with each other. In both plain double-pipe heat exchangers and dimpled double-pipe heat exchangers, heat transfer rates increased as the cooling water flow velocity increased. Under the same experimental conditions, the heat transfer performance of dimpled double-pipe heat exchangers was shown to be higher by 1.2 times than that of plain double-pipe heat exchangers.

Static Pressure Drop of Airflow in Packed-bed of Fruits and Vegetables (청과물 퇴적층에서의 공기유동 정압강하)

  • 김의웅;김병삼;남궁배;정진웅;김동철;금동혁
    • Journal of Biosystems Engineering
    • /
    • 제21권1호
    • /
    • pp.44-51
    • /
    • 1996
  • The purpose of this paper is to obtain the basic data for design of pressure cooling system. Static pressure drop, as a function of superficial velocity, was measured for different stacking methods and stacking heights of some fruits and vegetables. At given superficial velocity, sphericity and void fraction had a much greater influence on static pressure drop than average diameter of spherical fruits such as apple, peach, tomato and kiwi fruit. Among cylindrical vegetables such as cucumber, carrot, radish and chinese cabbage, cucumber showed different pattern of static pressure drop because of its bended shape, radish showed less static pressure drop than other vegetables because its large sizes of voids. When cucumber and spinach were stacked vertically and horizontally to air flow, a much greater static pressure drop was shown in vertical than in horizontal type, therefore static pressure drop was affected not only by void fraction but also by void shape. Also, in packed-beds of fruits and vegetables, static pressure drop could be estimated very well by Ramsins equation.

  • PDF

CFD Simulation of Airflow and Heat Transfer in the Cold Container (냉장 컨테이너 내부의 공기유동 및 열전달 현상에 대한 CFD 시뮬레이션)

  • Yun, Hong-Sun;Kwon, Jin-Kyung;Jeong, Hoon;Lee, Hyun-Dong;Kim, Young-Geon;Yun, Nam-Kyu
    • Journal of Biosystems Engineering
    • /
    • 제32권6호
    • /
    • pp.422-429
    • /
    • 2007
  • To prevent deterioration of agricultural products during cold transportation, optimized temperature control is essential. Because the control of temperature and thermal uniformity of transported products are mainly governed by cooling air flow pattern in the transportation equipment, the accurate understanding and removal of appearance of stagnant air zone by poor ventilation is key to design of optimized cooling environment. The objectives of this study were to develop simulation model to predict the airflow and heat transfer phenomena in the cold container and to evaluate the effect of fan blowing velocity on the temperature level and uniformity of products using the CFD approach. Comparison of CFD prediction with PIV measurement showed that RSM turbulent model reveals the more reasonable results than standard $k-{\varepsilon}$ model. The increment of fan blowing velocity improved the temperature uniformity of product and reduced almost linearly the averaged temperature of product.