• Title/Summary/Keyword: Cooler

Search Result 692, Processing Time 0.029 seconds

Evaluation of Catalyst Assisted EGR Cooler System for EGR Cooler Fouling Reduction (EGR Cooler Fouling 저감을 위한 촉매 장착 EGR Cooler System 평가)

  • Hong, Kwang-Seok;Park, Jung-Soo;Lee, Kyo-Seung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.5
    • /
    • pp.76-81
    • /
    • 2011
  • Exhaust gas recirculation is the well-known and widely used NOx reduction technology for diesel engines. More effective EGR cooler has been developed and applied to diesel engines to meet the reinforced emission regulation. However, the contaminated EGR cooler by diesel exhaust gas reduces the performance of the engine and NOx reduction rate. The buildup of deposits in EGR coolers cause significant degradation in heat transfer performance, often on the order of 20~30%. Deposits also increase pressure drop across coolers and thus may degrade engine efficiency under some operation conditions. In this study, as a solution for this problem, DOC assisted EGR cooler is designed and then investigated to reduce fouling and its impact on cooler performance. A single channel EGR cooler fouling test apparatus and soot particle generator were developed to represent the real EGR cooler and exhaust gas of diesel engine. EGR cooler effectiveness of the case with catalyst of pt 30g/ft3 decreased just up to 5%. This value was 45% less compared to the case without catalyst which decreased up to 9% after 10hours experiments.

Optimization of the Thermal Behavior of Linear Motors with High Speed and Force [$1^{st}$Paper] (고속$\cdot$대추력 리니어모터의 열특성 최적화 [1])

  • Eun, In-Ung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.6
    • /
    • pp.184-191
    • /
    • 2002
  • This paper presents the thermal behavior of a synchronous linear motor with high speed and force. Such a linear motor can successfully replace ball lead screw in machine tools because it has a high velocity, acceleration and good positioning accuracy. On the other hand, low efficiency and high heating up during operation are disadvantage of linear motors. For the application of linear motors to machine tools a water-cooling system is often used. In this research, structure of the linear motor and water cooler is changed to improve the thermal behavior of the linear motor. Some important effects of an integrated cooler, an U-cooler and a thermally symmetrical cooler are presented.

Cycle Simulation of a Desiccant Cooling System with a Regenerative Evaporative Cooler (재생형 증발식 냉각기를 이용한 제습 냉방시스템의 성능해석)

  • 이재완;이대영;강병하
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.6
    • /
    • pp.566-573
    • /
    • 2004
  • Comparison of the cooling performance is provided between the desiccant cool-ing systems incorporating a direct evaporative cooler and a regenerative evaporative cooler, respectively. Cycle simulation is conducted, and the cooling capacity and COP are evaluated at various temperature and humidity conditions. The COP of the system with a regenerative evaporative cooler and the regeneration temperature of 6$0^{\circ}C$ is evaluated 0.65 at the outdoor air condition of 35$^{\circ}C$ and 40% RH. This value is found about 3.4 times larger than that of the system with a direct evaporative cooler. Furthermore, incorporating a regenerative evaporative cooler eliminates the need for deep dehumidification in a desiccant dehumidifier that is necessary to achieve low air temperature in the system with a direct evaporative cooler. Subsequently, the regenerative evaporative cooler enables the use of low temperature heat source to regenerate the dehumidifier permitting the desiccant cooling system more beneficial compared with other thermal driven air conditioners.

Effects of performance analysis of a desiccant cooling system with a direct evaporative cooler in the regeneration process (재생 입구 직접증발냉각기 적용이 제습냉방시스템 성능에 미치는 영향)

  • Dash, Ulziiutas;Oh, Myung-Do
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.633-638
    • /
    • 2009
  • In this study the performance analysis and cooling capacity of desiccant cooling system incorporating regenerative cooler and direct evaporative cooler in the regeneration air inlet were investigated on the condition of low regeneration temperature and time rotation 180s and area ratio of regeneration to dehumidification section 0.7. The cooling capacity and COP are evaluated at various effectiveness values of the direct evaporative cooler or the regenerative evaporative cooler. As either of effectiveness of the regenerative and direct evaporative coolers of desiccant cooling system increases, both the cooling capacity and COP increase, but effectiveness value of regenerative cooler gives the opposite effect on the system performance. It is found that effectiveness of regenerative cooler less than 0.7 shows the optimum cooling capacity.

  • PDF

A Comparison of Operating Characteristics for Industrial Water Cooler with Variation of Control Methods (제어방식에 따른 산업용 수냉각기의 운전 특성 비교)

  • Baek, Seung-Moon
    • Journal of Power System Engineering
    • /
    • v.18 no.6
    • /
    • pp.99-105
    • /
    • 2014
  • This paper presents a comparison of operating characteristics for industrial water cooler with variation control methods. The performance analysis regarding the characteristics of condensation capacity, evaporation capacity, compressor load, COP of an on-off type cooler, a hot gas-bypass control type cooler and an inverter control type cooler with respect to the system load is reviewed, respectively. The primary results are as following: the variation of required compressor load of an on-off type cooler with respect to load is 5%, that of hot gas-bypass type is 18% and 66% for an inverter control type cooler. As the result shows, an inverter control type yields relatively huge difference of required compressor load compared to other types of control system. In terms of partial load, COP of an inverter control type cooler presents the highest value, and is considered as the optimized type for the used of the system involving frequent partial load.

The Effect of Cooling Efficiency on Fouling by EGR Cooler Internal Shape (EGR Cooler 내부 형상에 따른 Fouling이 냉각 성능에 미치는 영향)

  • Nam, Youn-Woo;Oh, Kwang-Chul;Lee, Chun-Hwan;Lee, Chun-Beom;Lee, Won-Nam
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.1
    • /
    • pp.101-108
    • /
    • 2011
  • Understanding the exhaust gas recirculation (EGR) cooler fouling in diesel engine is important factor in the durability characteristic of a EGR system. We develope a test rig and PM feeder using carbon black to examine the effect of fouling on EGR cooler devices those were consisted of flat and shell & tube type. The EGR cooler fouling process is a complex interaction involving heat exchanger shape, boundary condition, constitutes, chemistry and operating mode. As the soot deposited to EGR cooler, these formed a thin deposit layer that was less heat exchange than the fresh status of tube enclosing the exhaust gas, resulting in lower heat exchange effectiveness in both type coolers. But these deposits caused different results in pressure drop, it is increased in flat type, but decreased in Shell & tube type of EGR cooler. A cause was estimated from a change of the flow structure and a decrease of contact area as the EGR cooler fouling.

A Study on the Reliability Improvement of oil cooler for precision Machine Tools (정밀공작기계용 오일쿨러의 신뢰성 개선 연구)

  • Lee, Seung-Woo;Lee, Hwa-Ki
    • Journal of the Korea Safety Management & Science
    • /
    • v.9 no.3
    • /
    • pp.49-54
    • /
    • 2007
  • 신뢰성이란 단기간에 측정되는 성능과는 다른 지표로서 흔히 장기간에 걸쳐 평가되는 품질의 척도이다. Oil Cooler는 공작기계(machine tools)의 주축 및 구동부 등에서 발생하는 열 변형을 제어하는 장치로서 공작기계의 신뢰성 향상을 위해서는 oil cooler의 신뢰성 개선이 이루어져야 한다. 본 연구에서는 oil cooler의 신뢰성 개선을 위해 고장률 데이터베이스를 이용한 신뢰성 예측과 이를 통한 취약부품 분석을 실시하고 신뢰성 시험기를 통한 oil cooler의 신뢰성을 평가하였다. 이를 통해 oil cooler의 정량적 신뢰도를 계산하였으며 신뢰성호 향상을 위한 공정기법을 개발하여 적용하였다. Oil cooler의 신뢰성 개선을 통해 공작기계 및 반도체 제조 장비 등과 같은 제조 시스템의 신뢰성 향상을 기대할 수 있으며, 제안된 기법을 이용하여 다른 기계류 부품의 신뢰성 평가 및 개선에 적용할 수 있다.

Performance Simulation of a Ventilation System Adopting a Regenerative Evaporative Cooler (재생증발식 냉방기를 이용한 환기 냉방시스템의 성능해석)

  • Chang, Y.S.;Lee, D.Y.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.1
    • /
    • pp.8-15
    • /
    • 2011
  • Cooling load reduction was analysed of a ventilation system adopting a regenerative evaporative cooler. The regenerative evaporative cooler is a kind of indirect evaporative cooler which cools the air down to its inlet dewpoint temperature in principle without change in the humidity ratio. The regenerative evaporative cooler was found able to cool the ventilation air to $18{\sim}21^{\circ}C$ when the outdoor condition ranges $25{\sim}35^{\circ}C$ and 0.01~0.02 kg/kg. When the outdoor humidity ratio is lower than 0.018 kg/kg, the regenerative evaporative cooler was found to provide cooling performance enough to compensate the ventilation load completely and to supply additional cooling as well. Energy simulation during the summer was carried out for a typical office building with the ventilation system using the regenerative evaporative cooler. The results showed that the seasonal cooling load can be reduced by about 40% by applying the regenerative evaporative cooler as a ventilation conditioner. The reduction was found to increase as the outdoor temperature increases and the outdoor humidity ratio decreases.

Optimization of Middle Pressure and Bypass Mass Flow Rate in Cryogenic Refrigeration Cascade Cycle (초저온 케스케이드 냉동사이클의 중간압력 및 바이패스 유량 최적화)

  • Oh, S.T.;Choi, W.J.;Lee, H.S.;Yoon, J.I.;Yoo, S.I.;Choi, K.H.;Lee, S.G.
    • Journal of Power System Engineering
    • /
    • v.14 no.2
    • /
    • pp.28-33
    • /
    • 2010
  • In this research, cascade liquefaction process was simulated using two-staged direct expansion with inter-cooler. Evaporated gaseous refrigerant which has low pressure and temperature from the inter-cooler is mixed with gaseous refrigerant from outlet of 1st compressor, and flows into 2nd compressor. Therefore this prevents superheating compression. Compressor work of process which includes inter-cooler to all cycles shows the lowest value of 338.68 MW and it is lower 16.34% than that of basic process. Refrigeration capacity shows decreasing tendency as applied inter-cooler and that of process which includes inter-cooler to all cycles shows the lowest value of 449 MW. COP was increased when the inter-cooler was applied, and process which includes inter-cooler to all cycles shows highest value of 1.33. It shows that COP was increased because decrement of compressor work by applying inter-cooler was higher than decrement of refrigeration capacity.

Study on Heat Exchanger Efficiency of EGR Cooler with Dimpled Rectangular Tube Shape for Application of Diesel Vehicles (디젤 자동차용 딤플 사각 튜브형 EGR Cooler 의 열교환기 효율에 관한 연구)

  • Seo, Young-Ho;Heo, Seong-Chan;Ku, Tae-Wan;Song, Woo-Jin;Kim, Jeong;Kang, Beom-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.10
    • /
    • pp.769-775
    • /
    • 2008
  • In this study, the investigations on the dimpled type Exhaust Gas Recirculation (EGR) cooler have been focused on the high heat exchanger efficiency. To overcome low heat exchanger efficiency of general EGR cooler, the dimpled type EGR cooler was developed. It was ensured the improvement of the performance of the dimpled type EGR cooler related to the heat exchange based on a series of the experiment. These results were caused by the increase of thermal surface area in accordance with the dimple's one. The estimation model of the heat exchanger efficiency using the Effectiveness-NTU method was also developed in order to verify the validity of experimental result. Also, the program for the estimation of the heat exchanger efficiency on the EGR cooler with regard to the dimpled tube shape was developed. Resultantly, it was confirmed that the dimpled type EGR cooler could be served better performance than the conventional one in view of the heat exchanger efficiency.