• Title/Summary/Keyword: Cooldown Temperature

Search Result 21, Processing Time 0.022 seconds

An Investigation of Fluid Mixing with Direct Vessel Injection (직접용기주입에 따른 유체혼합에 관한 연구)

  • Cha, Jong-Hee;Jun, Hyung-Gil
    • Nuclear Engineering and Technology
    • /
    • v.26 no.1
    • /
    • pp.63-77
    • /
    • 1994
  • The objective of this work is to investigate fluid mixing phenomena related to pressurized thermal shock(PTS) in a pressurized water reactor(PWR) vessel downcomer during transient cooldown with direct vessel injection(DVI) using test models. The test model designs were based on ABB Combustion Engineering(C-E) System 80+ reactor geometry. A cold leg small break loss-of-coolant accident(LOCA) md a main steam line teak were selected as the potential PTS events for the C-E System 80+. This work consist of two parts. The first part provides the visualization tests of the fluid mixing between DVI fluid and existing coolant in the downcomer region, and the second part is to compare the results of thermal mixing tests with DVI in the other test model. Row visualization tests with DVI have clarified the physical interaction between DVI fluid and primary coolant during transient cooldown. A significant temperature drop was observed in the downcomer during the tests of a small break LOCA Measured transient temperature profiles agree well with the predictions by the REMIX code for a small break LOCA and with the calculations by the COMMIX-1B code for a steam line break event.

  • PDF

The Construction and Investigation of The 1/4 Wavelength Thermoacoustic Refrigerator (1/4파장 열음향 냉동기의 제작 및 성능시험)

  • Song, Kyu-Joe;Park, Jong-Ho;Lee, Sung-Ro;Lee, Jae-Ho
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.223-228
    • /
    • 2001
  • The thermoacoustic refrigerator has not only considerable possibility but also commercial usability, because it has high reliability, lower vibration, no moving part, and can easily be constructed. In this study, The thermoacoustic refrigerator were constructed. The apparatus is capable of driving closed systems containing He or air at mean pressures ranging from 1-9.3 bar, at frequencies ranging from 100-1000Hz. The resonance characteristics of the thermoacoustic refrigerator were investigated for better performance, The resonance tube is 340.5mm in length. In case of using air as a coolant. Freezing frequency is 174Hz, In case of using He as a coolant Freezing frequency is 625Hz. Using He, The cold-part temperature of the heat exchanger fell to $-23.7^{\circ}C$ after 120 minutes in 70W.

  • PDF

The Measurement of Real Deformation Behavior in Pilot LNG Storage Tank Membrane by using Strain Gage (스트레인 게이지를 이용한 Pilot LNG 저장탱크 멤브레인 실 변형 거동 측정)

  • Kim, Young-Kyun;Yoon, Ihn-Soo;Oh, Byoung-Taek;Hong, Seong-Ho;Yang, Young-Myung
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.108-113
    • /
    • 2004
  • Korea Gas Corp. has developed the design technology of the LNG storage tank. The membrane to be applied inside of the LNG storage tank is provided with corrugations to absorb thermal contraction and expansion caused by LNG temperature changes. It is very important to measure their thermal strains under LNG temperatures by analytical and experimental stress analysis of the membrane. We have developed a stress measurement system using strain gages and measured the strain during cooldown and storing the LNG. We also analyzed the measured data by comparison with the FEM data. On the basis of these results, we could design and assure the application of the Kogas Membrane to large scale LNG storage.

  • PDF

Effect of Si Addition on the Microstructure of AI-Cu-Si Alloy for Thin Film Metallization (반도체 metallization용 Al-Cu 합금의 미세구조 천이에 미치는 Si 첨가영향)

  • Park, Min-Woo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.05b
    • /
    • pp.237-241
    • /
    • 2000
  • The effects of Si addition on the precipitation processes of in Al-Cu-Si alloy films were studied by the transmission electron microscopy. Deposition of an Al-1.5Cu-1.5Si (wt. %) film at $305^{\circ}C$ resulted in formation of fine, uniformly distributed spherical $\theta$-phase particles due to the precipitation of the $\theta$ and Si phase particles during deposition. For deposition at $435^{\circ}C$, fine $\theta$-phase particles precipitated during wafer cooldown, while coarse Si nodules formed at the sublayer interface during deposition. The film susceptibility to corrosion is discussed in relation to the film microstructure and deposition temperature.

  • PDF

The Measurement of Real Deformation Behavior in Pilot LNG Storage Tank Membrane (Pilot LNG저장탱크 멤브레인 실 변형 거동 측정)

  • Kim Y.K.;Yoon I.S.;Oh B.T.;Rong S.H.;Yang Y.M.;Kim J.K.
    • Journal of the Korean Institute of Gas
    • /
    • v.9 no.3 s.28
    • /
    • pp.27-31
    • /
    • 2005
  • The membrane to be applied inside of the LNG storage tank is provided with corrugations to absorb thermal contraction and expansion caused by LNG temperature and pressure changes. It is very important to measure their thermal strains under LNG temperature by analytical and experimental stress analysis of the membrane. We have developed a stress measurement system using strain gages and measured the strain during cooldown and storing the LNG. We also analyzed the measured data by comparison with the FEM data.

  • PDF

Advanced In-Vessel Retention Design for Next Generation Risk Management

  • Kune Y. Suh;Hwang, Il-Soon
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1997.10a
    • /
    • pp.713-718
    • /
    • 1997
  • In the TMI-2 accident, approximately twenty(20) tons of molten core material drained into the lower plenum. Early advanced light water reactor (LWR) designs assumed a lower head failure and incorporated various measures for ex-vessel accident mitigation. However, one of the major findings from the TMI-2 Vessel Investigation Project was that one part of the reactor lower head wall estimated to have attained a temperature of 1100$^{\circ}C$ for about 30 minutes has seemingly experienced a comparatively rapid cooldown with no major threat to the vessel integrity. In this regard, recent empirical and analytical studies have shifted interests to such in-vessel retention designs or strategies as reactor cavity flooding, in-vessel flooding and engineered gap cooling of the vessel Accurate thermohydrodynamic and creep deformation modeling and rupture prediction are the key to the success in developing practically useful in-vessel accident/risk management strategies. As an advanced in-vessel design concept, this work presents the COrium Attack Syndrome Immunization Structures (COASIS) that are being developed as prospective in-vessel retention devices for a next-generation LWR in concert with existing ex-vessel management measures. Both the engineered gap structures in-vessel (COASISI) and ex-vessel (COASISO) are demonstrated to maintain effective heat transfer geometry during molten core debris attack when applied to the Korean Standard Nuclear Power Plant(KSNPP) reactor. The likelihood of lower head creep rupture during a severe accident is found to be significantly suppressed by the COASIS options.

  • PDF

Feasibility of Long Term Feed and Bleed Operation For Total Loss of Feedwater Event

  • Kwon, Young-Min;Song, Jin-Ho
    • Nuclear Engineering and Technology
    • /
    • v.28 no.3
    • /
    • pp.257-264
    • /
    • 1996
  • The conventional Equipment Environment Qualification (EEQ) envelope is developed based on the containment responses during the design basis events. The Safety Depressurization System (SDS) design without In-containment Refueling Water Storage Tank (IRWST) adopted in the Ulchin 3&4 challenges the conventional EEQ envelope during long term Feed and Bleed (F&B) operation due to the direct discharge of high mass and energy into the containment. Therefore, it is necessary to confirm that the containment pressure and temperature history during the long term F&B operation does not violate the conventional EEQ envelope. However, this subject has never been quantitatively assessed before. To investigate the success path of long term F&B operation this paper analyzes the thermal hydraulic response of the containment and Reactor Coolant System (RCS) until the completion of depressurization and cooldown of RCS into Shutdown Cooling System (SCS) entry condition. It is found that the SCS entry condition can be reached within 6 hours without violating the EEQ curve by proper operation of SDS valves, High Pressure Safety Injection (HPSI) pumps and active Containment Heat Removal System (CHRS). The suggested strategy not only demonstrates the feasibility of long term F&B operation but also can be utilized in the preparation of Emergency Procedure Guidelines (EPGs)

  • PDF

Indefinite sustainability of passive residual heat removal system of small modular reactor using dry air cooling tower

  • Na, Min Wook;Shin, Doyoung;Park, Jae Hyung;Lee, Jeong Ik;Kim, Sung Joong
    • Nuclear Engineering and Technology
    • /
    • v.52 no.5
    • /
    • pp.964-974
    • /
    • 2020
  • The small modular reactors (SMRs) of the integrated pressurized water reactor (IPWR) type have been widely developed owing to their enhanced safety features. The SMR-IPWR adopts passive residual heat removal system (PRHRS) to extract residual heat from the core. Because the PRHRS removes the residual heat using the latent heat of the water stored in the emergency cooldown tank, the PRHRS gradually loses its cooling capacity after the stored water is depleted. A quick restoration of the power supply is expected infeasible under station blackout accident condition, so an advanced PRHRS is needed to ensure an extended grace period. In this study, an advanced design is proposed to indirectly incorporate a dry air cooling tower to the PRHRS through an intermediate loop called indefinite PRHRS. The feasibility of the indefinite PRHRS was assessed through a long-term transient simulation using the MARS-KS code. The indefinite PRHRS is expected to remove the residual heat without depleting the stored water. The effect of the environmental temperature on the indefinite PRHRS was confirmed by parametric analysis using comparative simulations with different environmental temperatures.

Investigation of condensation with non-condensable gas in natural circulation loop for passive safety system

  • Jin-Hwa Yang;Tae-Hwan Ahn;Hwang Bae;Hyun-Sik Park
    • Nuclear Engineering and Technology
    • /
    • v.55 no.3
    • /
    • pp.1125-1139
    • /
    • 2023
  • The system-integrated modular advanced reactor 100 (SMART100), an integral-type pressurized water small modular reactor, is based on a novel design concept for containment cooling and radioactive material reduction; it is known as the containment pressure and radioactivity suppression system (CPRSS). There is a passive cooling system using a condensation with non-condensable gas in the SMART CPRSS. When a design basis accident such as a small break loss of coolant accident (SBLOCA) occurs, the pressurized low containment area (LCA) of the SMART CPRSS leads to steam condensation in an incontainment refuelling water storage tank (IRWST). Additionally, the steam and non-condensable gas mixture passes through the CPRSS heat exchanger (CHX) submerged in the emergency cooldown tank (ECT) that can partially remove the residual heat. When the steam and non-condensable gas mixture passes through the CHX, the non-condensable gas can interrupt the condensation heat transfer in the CHX and it degrades CHX performance. In this study, condensation heat transfer experiments of steam and non-condensable gas mixture in the natural circulation loop were conducted. The pressure, temperature, and effects of the non-condensable gas were investigated according to the constant inlet steam flow rate with non-condensable gas injections in the loop.

Evaluation of Pressure-Temperature Limit Curve for the Safe Operation of an RFV based on 3-D Finite Element Analyses (유한요소해석을 이용한 원자로용기 압력-온도 한계곡선의 평가)

  • Lee, Taek-Jin;Park, Yun-Won;Lee, Jin-Ho;Choe, Jae-Bung;Kim, Yeong-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.10
    • /
    • pp.1567-1574
    • /
    • 2001
  • In order to operate an RPV safely it is necessary to keep the pressure-temperature (P-T) limit during the heatup and cooldown process. While the ASME Code provides the P-T limit curve for safe operation, this limit curve has been prepared under conservative assumptions In this paper the effects of conservative assumptions involved in the P-T limit curve specified in the ASME Code Sec. XI were investigated. Three different parameters the crack depth the cladding thickness and the cooling rate, were reviewed based on 3-D finite element analyses. Also the constraint effect on P-T limit curve generation was investigated based on J- T approach. It was shown that the crack depth and the constraint effect change the safe region in P-T limit curve significantly Therefore it is recommended to prepare a more precise P-T limit curve based on finite element analysis to obtain P-T limit for safe operation of an RPV.