References
- J. Vujic, R.M. Bergmann, R. Skoda, M. Miletic, Small modular reactors: Simpler, safer, cheaper? Energy 45 (2012) 288-295. https://doi.org/10.1016/j.energy.2012.01.078
- A. Lokhov, R. Cameron, V. Sozoniuk, OECD/NEA study on the economics and market of small reactors, Nucl. Eng. Technol. 45 (2013) 701-706. https://doi.org/10.5516/NET.02.2013.517
- M.V.I. Fukami, A. Santecchia, CAREM project: innovative small PWR, Prog. Nucl. Energy 37 (2000) 265-270. https://doi.org/10.1016/S0149-1970(00)00057-3
- K.H. Bae, H.C. Kim, M.H. Chang, S.K. Sim, Safety evaluation of the inherent and passive safety features of the smart design, Ann. Nucl. Energy 28 (2001) 333-349. https://doi.org/10.1016/S0306-4549(00)00057-8
- M.D. Carelli, L.E. Conway, L. Oriani, B. Petrovic, C.V. Lombardi, M.E. Ricotti, A.C.O. Barroso, J.M. Collado, L. Cinotti, N.E. Todreas, D. Grgic, M.M. Moraes, R.D. Boroughs, H. Ninokata, D.T. Ingersoll, F. Oriolo, The design and safety features of the IRIS reactor, Nucl. Eng. Des. 230 (2004) 151-167. https://doi.org/10.1016/j.nucengdes.2003.11.022
- K. Shirvan, P. Hejzlar, M.S. Kazimi, The design of a compact integral medium size PWR, Nucl. Eng. Des. 243 (2012) 393-403. https://doi.org/10.1016/j.nucengdes.2011.11.023
- G.H. Seo, D. Shin, H.H. Son, Y. Kim, J.I. Lee, S.J. Kim, Preliminary Study of Conceptual Design of the ATOM Safety System, Nuclear Reactor Thermal Hydraulics, 2017. Xian China, September 3-8.
- X.H. Nguyen, C. Kim, Y. Kim, An advanced core design for a soluble-boron-free small modular reactor ATOM with centrally-shielded burnable absorber, Nucl. Eng. Technol. 51 (2019) 369-376. https://doi.org/10.1016/j.net.2018.10.016
- H. Ninokata, A comparative overview of thermal hydraulic characteristics of integrated primary system nuclear reactors, Nucl. Eng. Technol. 38 (2006) 33-44.
- N. Jiang, M. Peng, T. Cong, Simulation analysis of an open natural circulation for the passive residual heat removal in IPWR, Ann. Nucl. Energy 117 (2018) 223-233. https://doi.org/10.1016/j.anucene.2018.03.037
- P.E. Juhn, J. Kupitz, J. Cleveland, B. Cho, R.B. Lyon, IAEA activities on passive safety systems and overview of international development, Nucl. Eng. Des. 201 (2000) 41-59. https://doi.org/10.1016/S0029-5493(00)00260-0
- G.L. Xia, M. Peng, X. Du, Calculation analysis on the natural circulation of a passive residual heat removal system for IPWR, Ann. Nucl. Energy 72 (2014) 189-197. https://doi.org/10.1016/j.anucene.2014.02.018
- H.N. Butt, M. Ilyas, M. Ahmad, F. Aydogan, Assessment of passive safety system of a small modular reactor (SMR), Ann. Nucl. Energy 98 (2016) 191-199. https://doi.org/10.1016/j.anucene.2016.07.018
- H.S. Park, K.Y. Choi, S. Cho, S.J. Yi, C.K. Park, M.K. Chung, Experiments on the performance sensitivity of the passive residual heat removal system of an advanced integral type reactor, Nucl. Eng. Technol. 41 (2009) 53-62. https://doi.org/10.5516/NET.2009.41.1.053
- B.Y. Min, H.S. Park, Y.C. Shin, S.J. Yi, Experimental verification on the integrity and performance of the passive residual heat removal system for a SMART design with VISTA-ITL, Ann. Nucl. Energy 71 (2014) 118-124. https://doi.org/10.1016/j.anucene.2014.03.001
- Y. Zhang, S. Qiu, G. Su, W. Tian, Design and transient analyses of emergency passive residual heat removal system of CPR1000, Nucl. Eng. Des. 242 (2012) 247-256. https://doi.org/10.1016/j.nucengdes.2011.09.036
- M. Wang, H. Zhao, Y. Zhang, G. Su, W.X. Tian, S. Qiu, Research on the designed emergency passive residual heat removal system during the station blackout scenario for CPR1000, Ann. Nucl. Energy 45 (2012) 86-93. https://doi.org/10.1016/j.anucene.2012.03.004
- T. Suzuki, Deconstructing the zero-risk mindset: the lessons and future responsibilities for a post-Fukushima nuclear Japan, Bull. At. Sci. 67 (2011) 9-18.
- S.H. Chang, S.H. Kim, J.Y. Choi, Design of integrated passive safety system (IPSS) for ultimate passive safety of nuclear power plants, Nucl. Eng. Des. 260 (2013) 104-120. https://doi.org/10.1016/j.nucengdes.2013.03.018
- Y. Zhang, S. Qiu, G. Su, W. Tian, Design and transient analyses of emergency passive residual heat removal system of CPR1000. Part I: air cooling condition, Prog. Nucl. Energy 53 (2011) 471-479. https://doi.org/10.1016/j.pnucene.2011.03.001
- M. Wang, S. Qiu, W. Tian, G. Su, Y. Zhang, The comparison of designed watercooled and air-cooled passive residual heat removal system for 300 MW nuclear power plant during the feed-water line break scenario, Ann. Nucl. Energy 57 (2013) 164-172. https://doi.org/10.1016/j.anucene.2013.01.027
- M.J. Kim, J.H. Moon, Y. Bae, Y.I. Kim, H.J. Lee, Feasibility test of the concept of long-term passive cooling system of emergency cooldown tank, Ann. Nucl. Energy 80 (2015) 403-408. https://doi.org/10.1016/j.anucene.2015.02.025
- X. Lv, M. Peng, X. Yuan, G. Xia, Design and analysis of a new passive residual heat removal system, Nucl. Eng. Des. 303 (2016) 192-202. https://doi.org/10.1016/j.nucengdes.2016.03.020
- Z.Y. Guo, X.B. Liu, W.Q. Tao, R.K. Shah, Effectiveness-thermal resistance method for heat exchanger design and analysis, Int. J. Heat Mass Transf. 53 (2010) 2877-2884. https://doi.org/10.1016/j.ijheatmasstransfer.2010.02.008
- H. Ayhan, C.N. Sokmen, Investigation of passive residual heat removal system for VVERs: effects of finned type heat exchanger tubes, Appl. Therm. Eng. 108 (2016) 466-474. https://doi.org/10.1016/j.applthermaleng.2016.07.128
- Thermal-Hydraulic Safety System Research Department, MARS CODE MANUAL VOLUME V: Models and Correlations, Korea Atomic Energy Research Institute, 2009. KAERI/TR-3872/2004.
- S.S. Jeon, S.J. Hong, J.Y. Park, K.W. Seul, G.C. Park, Assessment of horizontal intube condensation models using MARS code. Part I: Stratified flow condensation, Nucl. Eng. Des. 254 (2013) 254-265. https://doi.org/10.1016/j.nucengdes.2012.10.006
- X.G. Yu, H.S. Park, Y.S. Kim, K.H. Kang, S. Cho, K.Y. Choi, Systematic analysis of a station blackout scenario for APR1400 with test facility ATLAS and MARS code from scaling viewpoint, Nucl. Eng. Des. 259 (2013) 205-220. https://doi.org/10.1016/j.nucengdes.2013.03.005
- Thermal-Hydraulic Safety System Research Department, MARS CODE MANUAL VOLUME I: Code Structure, System Models, and Solution Methods, Korea Atomic Energy Research Institute, 2009. KAERI/TR-2812/2004.
- Thermal-Hydraulic Safety System Research Department, MARS CODE MANUAL VOLUME II: Input Requirements, Korea Atomic Energy Research Institute, 2009. KAERI/TR-2811/2004.
- A. Hedayat, Simulation and transient analyses of a complete passive heat removal system in a downward cooling pool-type material testing reactor against a complete station blackout and long-term natural convection mode using RELAP5/3.2 code, Nucl. Eng. Technol. 49 (2017) 953-967. https://doi.org/10.1016/j.net.2017.03.009
- S.H. Kang, S.W. Lee, H.G. Kang, Performance analysis of the passive safety features of iPOWER under Fukushima-like accident conditions, Nucl. Eng. Technol. 51 (2019) 676-682. https://doi.org/10.1016/j.net.2018.11.010
- S.W. Churchill, H.H.S. Chu, Correlating equations for laminar and turbulent free convection from a vertical plate, Int. J. Heat Mass Transf. 18 (1975) 1323-1329. https://doi.org/10.1016/0017-9310(75)90243-4
-
A.Y. Inayatov, Correlation of data on heat transfer flow parallel to tube bundles at relative tube pitches of 1.1
- J.C. Chen, Correlation for boiling heat transfer to saturated fluids in convective flow, Ind. Eng. Chem. Process Des. Dev. 5 (1966) 322-329. https://doi.org/10.1021/i260019a023
- F.W. Dittus, L.M.K. Boelter, Heat transfer in automobile radiators of the tubular type, Int. Commun. Heat Mass Transf. 12 (1985) 3-22. https://doi.org/10.1016/0735-1933(85)90003-X
Cited by
- Simulation of a Station Blackout Accident for the SMART Using the CINEMA Code vol.8, 2020, https://doi.org/10.3389/fenrg.2020.503918