• 제목/요약/키워드: Coolant Temperature

검색결과 764건 처리시간 0.023초

NUMERICAL APPROACH FOR QUANTIFICATION OF SELFWASTAGE PHENOMENA IN SODIUM-COOLED FAST REACTOR

  • JANG, SUNGHYON;TAKATA, TAKASHI;YAMAGUCHI, AKIRA;UCHIBORI, AKIHIRO;KURIHARA, AKIKAZU;OHSHIMA, HIROYUKI
    • Nuclear Engineering and Technology
    • /
    • 제47권6호
    • /
    • pp.700-711
    • /
    • 2015
  • Sodium-cooled fast breeder reactors use liquid sodium as a moderator and coolant to transfer heat from the reactor core. The main hazard associated with sodium is its rapid reaction with water. Sodium-water reaction (SWR) takes place when water or vapor leak into the sodium side through a crack on a heat-transfer tube in a steam generator. If the SWR continues for some time, the SWR will damage the surface of the defective area, causing it to enlarge. This self-enlargement of the crack is called "self-wastage phenomena." A stepwise numerical evaluation model of the self-wastage phenomena was devised using a computational code of multicomponent multiphase flow involving a sodium-water chemical reaction: sodiumwater reaction analysis physics of interdisciplinary multiphase flow (SERAPHIM). The temperature of gas mixture and the concentration of NaOH at the surface of the tube wall are obtained by a numerical calculation using SERAPHIM. Averaged thermophysical properties are used to assess the local wastage depth at the tube surface. By reflecting the wastage depth to the computational grid, the self-wastage phenomena are evaluated. A two-dimensional benchmark analysis of an SWAT (Sodium-Water reAction Test rig) experiment is carried out to evaluate the feasibility of the numerical model. Numerical results show that the geometry and scale of enlarged cracks show good agreement with the experimental result. Enlarged cracks appear to taper inward to a significantly smaller opening on the inside of the tube wall. The enlarged outer diameter of the crack is 4.72 mm, which shows good agreement with the experimental data (4.96 mm).

항공기용 가스터빈의 고압 냉각터빈 노즐에 대한 복합열전달 해석 (Conjugate Heat Transfer Analysis for High Pressure Cooled Turbine Vane in Aircraft Gas Turbine)

  • 김진욱;박정규;강영석;조진수
    • 한국유체기계학회 논문집
    • /
    • 제18권2호
    • /
    • pp.60-66
    • /
    • 2015
  • Conjugate heat transfer analysis was performed to investigate the flow and cooling performance of the high pressure turbine nozzle of gas turbine engine. The CHT code was verified by comparison between CFD results and experimental results of C3X vane. The combination of k-${\omega}$ based SST turbulence model and transition model was used to solve the flow and thermal field of the fluid zone and the material property of CMSX-4 was applied to the solid zone. The turbine nozzle has two internal cooling channels and each channel has a complex cooling configurations, such as the film cooling, jet impingement, pedestal and rib turbulator. The parabolic temperature profile was given to the inlet condition of the nozzle to simulate the combustor exit condition. The flow characteristics were analyzed by comparing with uncooled nozzle vane. The Mach number around the vane increased due to the increase of coolant mass flow flowed in the main flow passage. The maximum cooling effectiveness (91 %) at the vane surface is located in the middle of pressure side which is effected by the film cooling and the rib turbulrator. The region of the minimum cooling effectiveness (44.8 %) was positioned at the leading edge. And the results show that the TBC layer increases the average cooling effectiveness up to 18 %.

Aluminium Distearate 첨가가 $UO_2$ 핵연료 제조에 미치는 영향 (Effect of the Addition of Aluminium Distearate on Manufacturing of $UO_2$ Nuclear Fuel)

  • 박지연;정충환;김영석
    • 한국세라믹학회지
    • /
    • 제29권8호
    • /
    • pp.609-616
    • /
    • 1992
  • This study has been investigated on the milling of Aluminium Distearate (ADS) powder and characteristics of the ADS-doped UO2 pellets. As-received ADS powder of the agglomerated particles has not shown any milling effect because of heat generated during planetary milling. But the use of coolant to effectively remove heat generated during milling has been found an effective way in breaking up the agglomerates of ADS powder. The green density of the UO2 pellet decreases with the amount of ADS powder doped. Therefore, in order to get the sintered density of 95% pellet decreases with the amount of ADS powder doped. Therefore, in order to get the sintered density of 95% theoretical density, the 200 ppm ADS-doped UO2 pellet has to be pressed under higher compacting pressure of 3500~4000 kgf/$\textrm{cm}^2$ compared with the ADS-undoped UO2 pellet pressed under around 3000 kgf/$\textrm{cm}^2$. The ADS-dpoed UO2 pellet with even relatively low sintered density of 10.27 g/㎤ exhibits open porosity of 1% while open porosity of the ADS-undoped UO2 pellet is reduced to around 1% only after its sintered density increases to 10.43g/㎤. It is, therefore, concluded that doping of ADS powder significantly contributes to the decrease in open porosity of the UO2 pellet. The dilatometry of the ADS doped UO2 pellet shows the sintering rate curve with the bimodal mode, which could be attributed to a phase reaction between UO2 and ADS. The X-ray diffraction analysis indicates that there occurs not any new phase formed but the shift of the peaks. It would be expected that a phase reaction resulting in solid solution would happen in the temperature range of 130$0^{\circ}C$ to 150$0^{\circ}C$ between UO2 and ADS.

  • PDF

950℃ 불순물을 포함한 헬륨 환경에서 CVD β-SiC의 산화 (Oxidation of CVD β-SiC in Impurity-Controlled Helium Environment at 950℃)

  • 김대종;김원주;장지은;윤순길;김동진;박지연
    • 한국세라믹학회지
    • /
    • 제48권5호
    • /
    • pp.426-432
    • /
    • 2011
  • The oxidation behavior of CVD ${\beta}$-SiC was investigated for Very High Temperature Gas-Cooled Reactor (VHTR) applications. This study focused on the surface analysis of the oxidized CVD ${\beta}$-SiC to observe the effect of impurity gases on active/passive oxidation. Oxidation test was carried out at $950^{\circ}C$ in the impurity-controlled helium environment that contained $H_2$, $H_2O$, CO, and $CH_4$ in order to simulate VHTR coolant chemistry. For 250 h of exposure to the helium, weight changes were barely measurable when $H_2O$ in the bulk gas was carefully controlled between 0.02 and 0.1 Pa. Surface morphology also did not change based on AFM observation. However, XPS analysis results indicated that a very small amount of $SiO_2$ was formed by the reaction of SiC with $H_2O$ at the initial stage of oxidation when $H_2O$ partial pressure in the CVD ${\beta}$-SiC surface placed on the passive oxidation region. As the oxidation progressed, $H_2O$ consumed and its partial pressure in the surface decreased to the active/passive oxidation transition region. At the steady state, more oxidation did not observable up to 250 h of exposure.

An evaluation on in-pile behaviors of SiCf/SiC cladding under normal and accident conditions with updated FROBA-ATF code

  • Chen, Ping;Qiu, Bowen;Li, Yuanming;Wu, Yingwei;Hui, Yongbo;Deng, Yangbin;Zhang, Kun
    • Nuclear Engineering and Technology
    • /
    • 제53권4호
    • /
    • pp.1236-1249
    • /
    • 2021
  • Although there are still controversial opinions and uncertainty on application of SiCf/SiC composite cladding as next-generation cladding material for its great oxidation resistance in high temperature steam environment and other outstanding advantages, it cannot deny that SiCf/SiC cladding is a potential accident tolerant fuel (ATF) cladding with high research priority and still in the engineering design stage for now. However, considering its disadvantages, such as low irradiated thermal conductivity, ductility that barely not exist, further evaluations of its in-pile behaviors are still necessary. Based on the self-developed code we recently updated, relevant thermohydraulic and mechanical models in FROBA-ATF were applied to simulate the cladding behaviors under normal and accident conditions in this paper. Even through steady-state performance analysis revealed that this kind of cladding material could greatly reduce the oxidation thickness, the thermal performance of UO2-SiC was poor due to its low inpile thermal conductivity and creep rate. Besides, the risk of failure exists when reactor power decreased. With geometry optimization and dopant addition in pellets, the steady-state performance of UO2-SiC was enhanced and the failure risk was reduced. The thermal and mechanical performance of the improved UO2-SiC was further evaluated under Loss of coolant accident (LOCA) and Reactivity Initiated Accident (RIA) conditions. Transient results showed that the optimized ATF had better thermal performance, lower cladding hoop stress, and could provide more coping time under accident conditions.

연소실 냉각채널 설계를 위한 1차원 열 해석 기법 확립 및 검증 (Establishment and Verification of One-Dimensional Thermal Analysis Technique for Design of Combustion Chamber Cooling Channel)

  • 김완찬;유이상;신동해;고영성
    • 한국항공우주학회지
    • /
    • 제47권2호
    • /
    • pp.122-129
    • /
    • 2019
  • 액체로켓 연소실 내부 벽면에서의 열전달은 대류, 복사 및 전도를 모두 고려해야 하기 때문에, 정확한 열전달량을 예측하기에는 어려움이 있다. 이에 현재 주로 상용 해석 프로그램을 사용할 경우가 많은데, 이 경우에는 복잡한 입력 작업과 상당한 계산 시간이 소요된다는 문제가 있다. 따라서 본 연구에서는 초기 기초 설계 단계에서 간편하게 사용할 수 있는 1차원 열 해석 기법을 정립하였으며, 정립된 1차원 열 해석기법을 통해 본 연구실에서 개발한 스팀제너레이터의 연소실 냉각채널을 설계하였다. 연소 실험 결과, 1차원 열 해석 기법을 통해 예측된 냉각수의 온도 증가량은 실험결과와 약 8.5%의 차이를 보임을 확인하였다.

SEINA: A two-dimensional steam explosion integrated analysis code

  • Wu, Liangpeng;Sun, Ruiyu;Chen, Ronghua;Tian, Wenxi;Qiu, Suizheng;Su, G.H.
    • Nuclear Engineering and Technology
    • /
    • 제54권10호
    • /
    • pp.3909-3918
    • /
    • 2022
  • In the event of a severe accident, the reactor core may melt due to insufficient cooling. the high-temperature core melt will have a strong interaction (FCI) with the coolant, which may lead to steam explosion. Steam explosion would pose a serious threat to the safety of the reactors. Therefore, the study of steam explosion is of great significance to the assessment of severe accidents in nuclear reactors. This research focuses on the development of a two-dimensional steam explosion integrated analysis code called SEINA. Based on the semi-implicit Euler scheme, the three-phase field was considered in this code. Besides, the influence of evaporation drag of melt and the influence of solidified shell during the process of melt droplet fragmentation were also considered. The code was simulated and validated by FARO L-14 and KROTOS KS-2 experiments. The calculation results of SEINA code are in good agreement with the experimental results, and the results show that if the effects of evaporation drag and melt solidification shell are considered, the FCI process can be described more accurately. Therefore, it is proved that SEINA has the potential to be a powerful and effective tool for the analysis of steam explosions in nuclear reactors.

Development of the vapor film thickness correlation in porous corrosion deposits on the cladding in PWR

  • Yuan Shen;Zhengang Duan;Chuan Lu ;Li Ji ;Caishan Jiao ;Hongguo Hou ;Nan Chao;Meng Zhang;Yu Zhou;Yang Gao
    • Nuclear Engineering and Technology
    • /
    • 제54권12호
    • /
    • pp.4798-4808
    • /
    • 2022
  • The porous corrosion deposits (known as CRUD) adhered to the cladding have an important effect on the heat transfer from fuel rods to coolant in PWRs. The vapor film is the main constituent in the two-phase film boiling model. This paper presents a vapor film thickness correlation, associated with CRUD porosity, CRUD chimney density, CRUD particle size, CRUD thickness and heat flux. The dependences of the vapor film thickness on the various influential factors can be intuitively reflected from this vapor film thickness correlation. The temperature, pressure, and boric acid concentration distributions in CRUD can be well predicted using the two-phase film boiling model coupled with the vapor film thickness correlation. It suggests that the vapor thickness correlation can estimate the vapor film thickness more conveniently than the previously reported vapor thickness calculation methods.

중수로 증기발생기 다중 전열관 파단사고시 파단 전열관 수에 대한 영향 분석 (Influence Analysis on the Number of Ruptured SG u-tubes During mSGTR in CANDU-6 Plants)

  • 유선오;이경원
    • 한국압력기기공학회 논문집
    • /
    • 제18권2호
    • /
    • pp.37-42
    • /
    • 2022
  • An influence analysis on multiple steam generator tube rupture (mSGTR) followed by an unmitigated station blackout is performed to compare the plant responses according to the number of ruptured u-tubes under the assumption of a total of 10 ruptured u-tubes. In all calculation cases, the transient behaviour of major thermal-hydraulic parameters, such as the discharge flow rate through the ruptured u-tubes, reactor header pressure, and void fraction in the fuel channels is found to be overall similar to that of the base case having a single SG with 10 u-tubes ruptured. Additionally, as the conditions of low-flow coolant with high void fraction in the broken loop continued, causing the degradation of decay heat removal, the peak cladding temperature (PCT) would be expected to exceed the limit criteria for ensuring nuclear fuel integrity. However, despite the same total number of ruptured u-tubes, because of the different connection configuration between the SG and pressurizer, a difference is foud in time between the pressurizer low-level signal and reactor header low-pressure signal, affecting the time to trip the reactor and to reach the PCT limit. The present study is expected to provide the technical basis for the accident management strategy for mSGTR transient conditions of CANDU-6 plants.

Numerical and statistical analysis of Newtonian/non-Newtonian traits of MoS2-C2H6O2 nanofluids with variable fluid properties

  • Manoj C Kumar;Jasmine A Benazir
    • Advances in nano research
    • /
    • 제16권4호
    • /
    • pp.341-352
    • /
    • 2024
  • This study investigates the heat and mass transfer characteristics of a MoS2 nanoparticle suspension in ethylene glycol over a porous stretching sheet. MoS2 nanoparticles are known for their exceptional thermal and chemical stability which makes it convenient for enhancing the energy and mass transport properties of base fluids. Ethylene glycol, a common coolant in various industrial applications is utilized as the suspending medium due to its superior heat transfer properties. The effects of variable thermal conductivity, variable mass diffusivity, thermal radiation and thermophoresis which are crucial parameters in affecting the transport phenomena of nanofluids are taken into consideration. The governing partial differential equations representing the conservation of momentum, energy, and concentration are reduced to a set of nonlinear ordinary differential equations using appropriate similarity transformations. R software and MATLAB-bvp5c are used to compute the solutions. The impact of key parameters, including the nanoparticle volume fraction, magnetic field, Prandtl number, and thermophoresis parameter on the flow, heat and mass transfer rates is systematically examined. The study reveals that the presence of MoS2 nanoparticles curbs the friction between the fluid and the solid boundary. Moreover, the variable thermal conductivity controls the rate of heat transfer and variable mass diffusivity regulates the rate of mass transfer. The numerical and statistical results computed are mutually justified via tables. The results obtained from this investigation provide valuable insights into the design and optimization of systems involving nanofluid-based heat and mass transfer processes, such as solar collectors, chemical reactors, and heat exchangers. Furthermore, the findings contribute to a deeper understanding of stretching sheet systems, such as in manufacturing processes involving continuous casting or polymer film production. The incorporation of MoS2-C2H6O2 nanofluids can potentially optimize temperature distribution and fluid dynamics.