• 제목/요약/키워드: Cool-Down

검색결과 267건 처리시간 0.024초

자동차용 이산화탄소 냉방 시스템의 정상상태 및 동적 특성에 관한 연구 (Studies on the Steady State and Dynamic Characteristics of a Carbon Dioxide Air-Conditioning System for Vehicles)

  • 박민수;김성철;김달원;김민수
    • 대한기계학회논문집B
    • /
    • 제31권6호
    • /
    • pp.531-538
    • /
    • 2007
  • In this study, an air conditioning system using carbon dioxide as a refrigerant was developed for automotive cabin cooling. Experiments have been carried out to examine the steady state and dynamic characteristics of this system. The system consists of a compressor, a gas cooler, an evaporator, an expansion device, an internal heat exchanger and an accumulator. The compressor is a variable displacement type, driven by the electric motor, and the gas cooler and the evaporator are aluminum extruded heat exchangers of micro channel type. The $CO_2-refrigerant$ charge, the compressor speed, the air inlet temperature of the gas cooler, the air inlet temperature and the air flow rate of the evaporator and the cooling load are varied and the performance of the system is experimentally investigated. As the compressor speed increased, cooling capacity increased, but the coefficient of performance was deteriorated. As the cabin air temperature or the air flow rate to the cabin was set high, both the cooling capacity and the COP increased. In the cool down experiment with 1.0 or 2.0 kW of heat load, the dynamic characteristics of the air-conditioning system were investigated. For a given capacity of compressor, cool down speed was monitored, and the temperature change was acceptable fur low heat load condition.

N$_2$와 CF$_4$ 혼합물을 작동유체로 하는 극저온 열사이펀에 대한 실험적 연구 (Experimental Investigation on the Cryogenic Thermosiphon Using N$_2$ and CF$_4$ Mixture as the Working Fluid)

  • 김영권;이지성;정상권;한영희;정세용;박병준
    • 설비공학논문집
    • /
    • 제21권9호
    • /
    • pp.505-512
    • /
    • 2009
  • A thermosiphon is utilized as a thermal shunt to reduce the cool-down time of a cryogenic system cooled by a two stage cryocooler. The cool-down time reduction by the thermosiphon is determined by the type of working fluid which is directly related to the operating temperature range of the thermosiphon. A mixed working fluid has a potential to widen the operation temperature range of the thermosipohon. In this study, the thermosiphon using N$_2$ and CF$_4$ mixture as the working fluid is fabricated and tested to verify its transient heat transfer performance. The thermosiphon with the mixed working fluid has no noticeable reduction of cool-down time compared with that of the thermosiphon with pure working fluid in this experiment. However, it seems that the thermosiphon with mixed working fluid may have an advantage according to the cooling capacity of a cryocooler, the cooling target temperature and the size of a cooling object.

THE EFFECT OF HYDROGEN AND OXYGEN CONTENTS ON HYDRIDE REORIENTATIONS OF ZIRCONIUM ALLOY CLADDING TUBES

  • CHA, HYUN-JIN;JANG, KI-NAM;AN, JI-HYEONG;KIM, KYU-TAE
    • Nuclear Engineering and Technology
    • /
    • 제47권6호
    • /
    • pp.746-755
    • /
    • 2015
  • To investigate the effect of hydrogen and oxygen contents on hydride reorientations during cool-down processes, zirconium-niobium cladding tube specimens were hydrogen-charged before some specimens were oxidized, resulting in 250 ppm and 500 ppm hydrogen-charged specimens containing no oxide and an oxide thickness of $0.38{\mu}m$ at each surface. The nonoxidized and oxidized hydrogen-charged specimens were heated up to $400^{\circ}C$ and then cooled down to room temperature at cooling rates of $0.3^{\circ}C/min$ and $8.0^{\circ}C/min$ under a tensile hoop stress of 150 MPa. The lower hydrogen contents and the slower cooling rate generated a larger fraction of radial hydrides, a longer radial hydride length, and a lower ultimate tensile strength and plastic elongation. In addition, the oxidized specimens generated a smaller fraction of radial hydrides and a lower ultimate tensile strength and plastic elongation than the nonoxidized specimens. This may be due to: a solubility difference between room temperature and $400^{\circ}C$; an oxygen-induced increase in hydrogen solubility and radial hydride nucleation energy; high temperature residence time during the cool-down; or undissolved circumferential hydrides at $400^{\circ}C$.

LNG 저장탱크의 종합 열유동 해석프로그램 개발 (Program Development on the Thermofluidodynamic Analysis of LNG Storage Tanks)

  • 김호연;최성희;박영;이정환;윤익근;김동혁;하종만;주상우
    • 한국가스학회지
    • /
    • 제5권2호
    • /
    • pp.52-61
    • /
    • 2001
  • [ $100,000m^3$ ] 규모의 원통형 탱크에 저장되어 있는 초저온의 액화천연가스는 외부조건 및 운전모드에 따라 복잡한 유동양상과 열물성 변화를 보인다. 이런 현상은 LNG의 저장 및 운전조건과 탱크의 설계사양 및 열전달 특성에 크게 영향을 받으며, 또한 저장탱크내 LNG의 안정적 저장 및 공급에 영향을 미치게 된다. 따라서, 본 연구에서는 LNG 저장탱크의 외부조건에 따른 2차원 열전달 해석, 시운전시 초기 상온상태의 LNG 저장탱크를 냉각하기 위한 Cool Down 프로세스, 그리고 탱크내 LNG의 유입 및 상승을 고려한 주입프로 세스의 해석을 수행하였다. 또한, 혼합 LNG 저장에 대한 해석도 수행하였다. 이런 LNG저장탱크내의 전반적인 열유동에 대한 해석을 토대로 가시화된 종합적인 열유동 해석프로그램을 개발하였다. 본 프로그램의 개발은 탱크내 저장된 LNG의 열적 안정성 해석의 기술력 확보뿐만 아니라 실탱크의 기본설계에 이용할 수 있게 되었다.

  • PDF

SiC Mosfet's Application

  • Kim, Simon
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2018년도 전력전자학술대회
    • /
    • pp.519-521
    • /
    • 2018
  • For most of application, total system cost is first priority to Engineer. Approach for making system cost down can be to reduce cooling cost by selecting low loss item or reducing filter cost by increasing frequency. SiC Mosfet ($CoolSiC^{TM}$) can approach both of case. This paper shows market-needs and reviews each application with SiC.

  • PDF

원자로 용기의 압력-온도 한계곡선 Round Robin 해석 (Round Robin Analysis of Pressure-Temperature Limit Curve for Reactor Vessel)

  • 정명조;이진호;박윤원;최영환;김영진
    • 한국전산구조공학회논문집
    • /
    • 제16권2호
    • /
    • pp.153-163
    • /
    • 2003
  • 원자로 용기의 온도-압력 한계곡선을 위하여 국내공동비교연구를 수행하였다. 국내 원전의 데이터를 이용하여 국내 각 기관에서 온도-압력 한계곡선 작성에 사용하고 있는 방법 및 기법을 비교하기 위하여 round robin 해석을 제안하였고 주어진 문제에 대하여 각 기관이 문제를 해석한 후 결과를 제출하여 이들을 분석함으로써 온도-압력 한계곡선 작성에 대한 표준 해석 자료를 만들어 추후 평가에 이용할 수 있도록 하였다.

동축형 스털링 맥동관 냉동기의 성능개선에 관한 연구 (A Study for Performance Improvements in the Coaxial Type Stirling Pulse Tube Cryocooler)

  • 박성제;홍용주;김효봉;김양훈
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.1329-1334
    • /
    • 2004
  • The most compact and convenient pulse tube cryocooler for practical applications is the coaxial type. It can replace Stirling cryocooler without any change to the Dewar or the connection to the cooled devices. The experimental results of the coaxial inertance tube pulse tube cryocooler for cooling superconductor RF filter are presented in this paper. To find optimal conditions of inertance tube pulse tube cryocooler, no load temperature according to the variations of inertance tube volume, reservoir volume are measured, and the cool down characteristics at the particular conditions are presented. In case of the coaxial type inertance tube pulse tube refrigerator, cool down time is the lowest in the inertance tube diameter of 1.3 mm and inertance tube length of 1900 mm and lowest temperature is 112K. This results are not satisfactory for practical applications. So, We propose vacuum insulation between regenerator and pulse tube in the Stirling type coaxial pulse tube cryocooler. Stirling type coaxial pulse tube cryocooler with the vacuum insulation between regenerator and pulse tube was designed and manufactured by KIMM(Korea Institute of Machinery and Materials). The optimal conditions will be tested for Stirling type coaxial pulse tube cryocooler with the vacuum insulation between regenerator and pulse tube.

  • PDF

수소 Joule-Thomson냉동기의 성능실험 (Performance test of Joule-Thomson cryocooler with $H_2$gas)

  • 백종훈;강병하;홍성제;장호명
    • 설비공학논문집
    • /
    • 제11권4호
    • /
    • pp.457-463
    • /
    • 1999
  • The Joule-Thomson cryocooler with $H_2$gas has been developed. Cool-down characteristics and the cooling performance of a JT cryocooler have been investigated in detail. The JT cryocooler consists of JT expansion valve, heat exchanger, expansion chamber, compressed $H_2$gas storage tank, $LN_2$precooler, heater and a cryostat. The precooling process using both $GN_2$and $LN_2$was peformed to cool down the inside components of cryocooler under the maximum inversion temperature of $H_2$. The $H_2$expansion experiments have been peformed for 2-5MPa of H$_2$pressure to evaluate steady state temperatures of the cryocooler. It is found that the steady state temperatures are decreased as the H$_2$pressures are increased. The effects of cooling temperatures on the performance have been evaluated for various $H_2$and $N_2$pressures. It is seen that the cooling loads are increased, as the cooling temperature and operating pressure are increased.

  • PDF

HFC152a 대체냉매를 이용한 자동차 냉방장치의 성능 최적화에 관한 연구 (Study of Performance Optimization as an Alternative Refrigerant HFC152a in a Mobile Air Conditioning System)

  • 이대웅
    • 설비공학논문집
    • /
    • 제27권6호
    • /
    • pp.321-327
    • /
    • 2015
  • This study presents an HFC152a refrigerant air conditioner as an alternative to HFC134a, which is currently used in mobile air conditioning systems. Cool-down performance tests of an HFC152a air conditioning system were conducted and compared to a baseline HFC134a air conditioner. The experimental set-up consisted of a belt-driven compressor, a sub-cooled type condenser, an evaporator, and a block-type thermal expansion valve (TXV). A drop-in test was carried out on the mobile air conditioning system under various vehicle running speeds in a climate-controlled wind tunnel (CWT). Additionally, to optimize the HFC152a air conditioning system, the effects of the TXVs on the performance were studied. The results show that compared to the HFC134a air conditioning system, the refrigerant charge quantity was reduced by approximately 20%, the discharge pressure was reduced by about 350~430 kPa, and the air discharge temperature at vehicle running conditions was $0.5{\sim}1.5^{\circ}C$ lower. In addition, good compressor durability was expected due to the lower compression ratio.

Allowable peak heat-up cladding temperature for spent fuel integrity during interim-dry storage

  • Jang, Ki-Nam;Cha, Hyun-Jin;Kim, Kyu-Tae
    • Nuclear Engineering and Technology
    • /
    • 제49권8호
    • /
    • pp.1740-1747
    • /
    • 2017
  • To investigate allowable peak cladding temperature and hoop stress for maintenance of cladding integrity during interim-dry storage and subsequent transport, zirconium alloy cladding tubes were hydrogen-charged to generate 250 ppm and 500 ppm hydrogen contents, simulating spent nuclear fuel degradation. The hydrogen-charged specimens were heated to four peak temperatures of $250^{\circ}C$, $300^{\circ}C$, $350^{\circ}C$, and $400^{\circ}C$, and then cooled to room temperature at cooling rates of $0.3^{\circ}C/min$ under three tensile hoop stresses of 80 MPa, 100 MPa, and 120 MPa. The cool-down specimens showed that high peak heat-up temperature led to lower hydrogen content and that larger tensile hoop stress generated larger radial hydride fraction and consequently lower plastic elongation. Based on these out-of-pile cladding tube test results only, it may be said that peak cladding temperature should be limited to a level < $250^{\circ}C$, regardless of the cladding hoop stress, to ensure cladding integrity during interim-dry storage and subsequent transport.