• Title/Summary/Keyword: Cool season grasses

Search Result 46, Processing Time 0.026 seconds

Late Fall Nitrogen Application and Turf Cover for Zoysiagrass (Zoysia japonica) Spring Green-up

  • Oh, Jun-Suk;Lee, Yu-Jin;Lee, Sang-Kook
    • Weed & Turfgrass Science
    • /
    • v.4 no.4
    • /
    • pp.383-389
    • /
    • 2015
  • The use of zoysiagrass (Zoysia japonica Steud.) in the transition zone is limited because of a lack of cold hardiness although zoysiagrass has many advantages compared to other warm-season and cool-season grasses. Late-fall N fertilization is often applied for darker green color of turfgrass in early spring and more extensive root growth without rapid top growth. The objective of the study was to evaluate the effects of late fall N application and turf cover for zoysiagrass spring green-up. Clear polyvinyl chloride (PVC) film was used for turf cover. The amount of N applied were 5 and $10g\;N\;m^{-2}$ for the low and high N rate treatments, respectively. Covered zoysiagrass had greater turfgrass color and quality in early spring than non-covered zoysiagrass. The high N rate had 0.6 to 2.3 greater turfgrass quality than the low N rate on 7 of 9 rating dates. Slow-release N as late fall fertilization is more effective for turfgrass color and quality than fast-release N in spring. Turf cover could reduce the period of yellow zoysiagrass, and the earlier time of spring green-up could be advanced by increasing turfgrass quality and growth of zoysiagrass.

Seasonal Differences in Turf Quality of Kentucky Bluegrass, Perennial Ryegrass, Tall Fescue and Mixtures Grown under a Pure Sand of USGA System (USGA 모래 지반구조에서 캔터키블루그래스, 퍼레니얼 라이그래스, 톨훼스큐 및 혼합구 잔디의 연중 품질 차이)

  • Kim, Kyoung-Nam;Nam, Sang-Yong
    • Asian Journal of Turfgrass Science
    • /
    • v.19 no.2
    • /
    • pp.151-160
    • /
    • 2005
  • Research was initiated to investigate seasonal turf quality under a sand-based USGA soil system. USGA system 45 centimeters deep was built with rootzone layer, intermediate layer, and drainage layer. Six turfgrass entries were comprised of 3 blends and 3 mixtures from cool-season grasses (CSG). Turfgrass quality ratings were best in spring and fall, especially early May to early July and late August to early November. Kentucky bluegrass(KB) consistently produced the greatest quality, while perennial ryegrass (PR) the poorest. Intermediate turf quality between KB and PR was observed with tall fescue (TF). Among CSG mixtures it increased with KB but decreased with PR. There were considerable variations in summer turf performance. No summer drought injury was found in KB and TF. However, PR showed poor performance through summer as compared with other CSG. Results demonstrate that KB was the best and PR the worst among CSG grown in a sand-based USCA soil system.

Study on the Ecological Restoration of Rock-exposed-cut-slope by Natural Topsoil Restoration Methods : In Case of Won-Ju Experiment (자연표토 복원공법에 의한 암절취비탈면의 생태적 복원에 관한 연구 : 원주사례지역을 중심으로)

  • Nam, Sang-Joon;Suk, Won-Jin;Kim, Nam-Choon
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.2 no.4
    • /
    • pp.54-63
    • /
    • 1999
  • This study was conducted to suggest the ecological restoration and environmentally friendly revegetation technology for the rock-exposed cut-slopes by the Natural Topsoil Restoration Methods (NTRM) with the following restoration objectives; (1) prevention or reduction of wind and water erosion, (2) provision of food and cover for variety of animal species, (3) improvement of the visual or aesthetic quality of the disturbed slopes. On Nov. in 1995, the 5cm thick layer of artificial soil and 2cm thick layer of straw-mulching was attached at rock-exposed cut-slopes by NTRM without using anchor wire and anchor pin. The main results during four years surveying on the ground-coverage effect, plant growth, species diversity and importance values were summarized as follows. 1. Artificial soil attached at rock exposed cut-slopes was not eroded until recovered by tree and herbaceous vegetation in spite of not using anchor wire and anchor pin. Also it shows low soil hardiness and has almost the same amount of bacteria and fungi with in surrounding natural topsoil. 2. In 'combination for the woody vegetation', Lespedeza cyrtobotrya, Albizzia julibrissin, Rhus chinensis, Indigofera pseudo-tinctoria occupied upper layer vegetation. Since three years after seeding, Indigofera pseudo-tinctoria had overwhelmed the other woody plants and cool season foreign grasses, Erigeron canadensis, Taraxacum mongolicum, Commelina communis, Arundinella hirta (Thunberg) and Oenothera erythrosepala grows at lower part of the vegetation, 3. The heights of the Rhus chinensis grows 1.8m, Indigofera pseudo-tinctoria 2.0m, so it seems that the objectives of woody vegetation with native plants could be accomplished. 4. After 4 years later after seeding in 'combination for the herbaceous vegetation', the most dominant plant was Indigofera pseudo-tinctoria, the next was in order of cool-season grasses, Taraxacum mongolicum, Erigeron canadensis, lxeris dentata (Thunberg), Oenothera erythrosepala, Arundinella hirta (Thunberg). The diversity index in 'combination for woody vegetation' was higher than that in 'combination for the herbaceous vegetation'. The tendency of the intrusion of secondary succession plants was more effective in 'combination for the herbaceous vegetation' than in 'combination for the woody vegetation'.

  • PDF

A study on an effect of food waste compost for rock cut-slope revegetation (암비탈면녹화에 음식물퇴비의 활용방안에 관한 연구)

  • Cho Hae-Yong;Chang Pil-Kyu;Kim Hyung-Ju
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.6 no.4
    • /
    • pp.296-301
    • /
    • 2005
  • This study was conducted to get the basic data on an effect of food waste compost for rock cut-slopese vegetation. Two foreign cool-season grasses and native plants were used for this experiment. Cool-season grasses were Festuca ruba and Lolium perene, Native plants were Amorpha fruticosa, and Indigofera pseudo-tinctoria. Amorpha fruticosa, Indigofera psendo-tinctoria, and Lolium perenne decreased in germination rate and plant height at NaCl concentrations of $0.4\%$ or over suddenly. Festuca rubra occurred to the sudden growth hindrance at NaCl concentrations of $0.2\%$ or over. Amorpha fruticosa and Indigofera pseudo-tinctoria appeared for germination of $45\%$ at all experiment plots. Lolium perenne increased in plant height as trial rate of food waste compost was abundant. Ground cover rate was the highest in Mixture III by $89.3\%$ and was fluctuated from $47.0\%$ after 30 days to $64.1\%$ after 45 days in Mixture 1. Descending order of ground cover rates in 4 treatments was Mixture III, Mixture IV, Mixture II, and Mixture I. As the growth

  • PDF

Cutting Frequency Effects on Forage Yield and Stand Persistence of Orchardgrass and Alfalfa-Orchardgrass Fertilized with Dairy Slurry

  • Min, D.H.;Vough, L.R.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.13 no.5
    • /
    • pp.630-635
    • /
    • 2000
  • Previous research has not evaluated the effects of various rates and frequencies of manure application and frequencies of cutting on yield and stand persistence of cool-season grasses and alfalfa-grass mixtures. The primary objective of this study was to compare the effects of cutting management systems on herbage yield and stand persistence of orchardgrass (Dactylis glomerata L.) and an alfalfa (Medicago sativa L.)-orchardgrass mixture from various rates and frequencies of dairy slurry application. A randomized complete block design with treatments in a sub-subplot arrangement with four replicates was used. The main plot consisted of 2 cutting management systems (4 and 5 annual cuttings). The subplots were 9 fertility treatments: 7 slurry rate and frequency of application treatments, one inorganic fertilizer treatment, and an unfertilized control. The split-split-plots were the two forage species: orchardgrass and alfalfa-orchardgrass mixture. The study was initiated after 1st cutting in 1995. Cumulative yields of the 2nd and subsequent cuttings of both orchardgrass and alfalfa-orchardgrass in 1995 were higher for the 5-cutting system than the 4-cutting system. The 1995 growing season was abnormally dry. In 1996, an abnormally wet year, the reverse was true, total herbage yields being higher for the 4-cutting system than the 5-cutting system. Species response to fertility rate/frequency treatments was different in both years. Higher application rates early in the season and carryover of nutrients from late season applications the previous year appear to be responsible for the yield increases of those fertility treatments having significant yield differences between the cutting management systems. The stand ratings of orchardgrass were not affected by cutting management. In the spring of 1997, however, the stand ratings of alfalfa-orchardgrass in the 4-cutting management system were significantly greater than the 5-cutting management system. The very high manure application rate significantly reduced the stand ratings of alfalfa-orchardgrass in the 5-cutting system.

Studies on the Control of Summer Depression of Pasture Plants -Effect of Mulching on the Productivity and Chemical Composition of Pasture Plants- (목초(牧草)의 하고성(夏枯性) 방제(防除)에 관(關)한 연구(硏究) -초지피복(草地被覆)이 목초(牧草) 생산성(生産性) 및 영양성분(營養成分)에 미치는 영향(影響)-)

  • Kim, Jong-Woo
    • Korean Journal of Agricultural Science
    • /
    • v.3 no.2
    • /
    • pp.184-191
    • /
    • 1976
  • This experiment was conducted for the control of summer depression of cool-season pasture plant. Orchard grass, tall fescue, red clover, alfalfa, and crabgrass were mulched by barley straw with depths of $100g/m^2$, $200g/m^2$ and $300g/m^2$ for 45 days -from July 1, to August 14-, and the effects on growth, yield and chemical composition were observed. The results obetain were as follow: Temperature decrease of $1.0{\sim}3.04^{\circ}C$ was followed after barley straw mulching on the grassland as compared with the control. The growth of the grasses after mulching was hastened, i. e. plant height was increasd 6.0~45% as compared with the control. Barley straw mulching with $100g/m^2$ supported the increase in yield of the grasses with an average of 32.77%, however, average yield was decreased by 7.75% with $300g/m^2$ mulching, apparently due to the rottening of grasses. Chemical compositions of mulched grasses were varied; contents of crude protein and nitrogen free extract were higher, but crude fats, fibre, and ashes were lower than those of the control.

  • PDF

Various Turf Covers for Kentucky bluegrass Growth and Spring Green-up

  • Lee, Sang-Kook
    • Weed & Turfgrass Science
    • /
    • v.2 no.3
    • /
    • pp.292-297
    • /
    • 2013
  • Winter turfgrass injury is one of the critical problems of many golf courses in Korea. Turfgrass loss from freezing injury due to low temperature leads to many types of damages including weed invasion, increased herbicide cost, increased soil erosion, and expensive re-establishment. Although Kentucky bluegrass (Poa pratensis L.) which is the most widely used among cool-season grasses in Korea is well known as cold tolerance species, freezing injuries to Kentucky bluegrass during winter are often found. Protecting the turfgrass crown is necessary to recover from low temperature stress in winter because shoots and roots can be recovered from the crown. Turf covers may protect the crowns from direct low temperatures and desiccation. Six different turf covers were installed to cover Kentucky bluegrass during a period of low temperatures. Turf covers had positive effects for spring green-up of Kentucky bluegrass based on the study. Applying any type of turf covers on Kentucky bluegrass resulted in an increase average and minimum temperature compared to the uncovered plot. Among turf covers, clear PVC film without holes produced the longest root length and the highest turfgrass quality.

Comparison of Turfgrass Density, Uniformity and Tiller Characteristics in Mixtures of Overseeded Warm-Season and Cool-Season Grasses (덧파종한 난지형 및 한지형 혼합 식생 잔디밭에서 잔디밀도, 균일도 및 분얼경 특성 비교)

  • Kim, Kyoung-Nam
    • Weed & Turfgrass Science
    • /
    • v.6 no.1
    • /
    • pp.67-76
    • /
    • 2017
  • The study was initiated to evaluate the effects of overseeding warm-season grass (Zoysia japonica Steud.) with cool-season grasses (CSG) on turfgrass density, uniformity and tiller appearance and to determine turfgrass species and seeding rate applicable for a practical use. Treatments were comprised of Kentucky bluegrass (KB, Poa pratensis L.), perennial ryegrass (PR, Lolium perenne L.), tall fescue (TF, Festuca arundinacea Schreb.) and their mixtures. Overall turfgrass density and uniformity were much better with the overseeded treatments over the control. In early stage after overseeding, the greater the PR in treatments, the greater the turfgrass density and uniformity. But the higher the KB, the lower the density and uniformity. From the middle-stage evaluation, however, we observed the opposite results as compared with early-stage findings. Accordingly, the KB was highest in turfgrass density and uniformity, while the PR lowest. In regards of mixtures, both turfgrass density and uniformity were better with increased KB and decreased PR in overseeding rates. As for a medium-quality mixtures of Korean lawngrass with CSG, it would be the best choice to apply with KB at $50g\;m^{-2}$ and equal combination of KB, PR and TF by 1/3 in mixing at $75g\;m^{-2}$ in terms of sustainable density and uniformity.

Studies on Dry Matter Yields , Chemical Composition and Net Energy Accumulation in Three Leading Temperate Grass Species II. Synthesis and accumulation pattern of nonstructural carbohydrate (주요 북방형목초의 건물수량 , 화학성분 및 New Energy 축적에 관한 연구 II. 비구조성탄수화물의 합성 및 축적형태)

  • ;;F. Muhlschlegel
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.6 no.2
    • /
    • pp.111-118
    • /
    • 1986
  • Sysnthesis and accumulation pattern or nonstructural carbohydrates in orchardgrass (Dactylis glomerata L.) cv. Potomac and Baraula, perennial ryegrass (Lolium perenne L.) cv. Reveille and Semperweide and meadow fescue (Festuca pratensis Huds.) cv. Cosmos 11 and N.F.G. were studied under different meteorological environments and cutting managements. The field experiments were conducted as a split plot design with three cutting regimes of 6-7 cuts at grzing stage, 4-5 cuts at silage stage and 3 cuts at hay stage in Korea and West Germany from 1975 to 1979. The results obtained are summarized as follows: 1. Accumlation of nonstructural carbohydrates in temperate grasses was influenced by grass species and regional climatic environments. Total nonstructural carbohydrates (TNC) of orchardgrass, perennial ryegrass and meadow fescue in Korea, taken as average of all cutting regimes, were shown a value of 4.39%, 6.08% and 8.01%, respectively, while those under cool summer climatic condition in West Germany accumulated to 10.42% (orchardgrass), 18.02% (perennial ryegrass) and 12.73% (meadow fescue). 2. Nonstructural carbohydrates in orchardgrass were accumulated mainly as mono-and disaccharose, while those in perennial ryegrass resreved as fructosan. The contents of fructosan and mono-and disaccharose were 1.34% and 3.04% for orchardgrass, 3.25% and 2.83% for perenninal ryegrass, respectively. Meadow fescue had a concentration of 3.93% fructosan and 4.08% mono-and disaccharose. 3. Synthesis and accumulation of nonstructural carbohydrates in temperate grasses were negative associated with increasing of air temperature (P$\leq$ 0.1%). Under hot stress during summer season in Korea, the contents of fructosan, mono-and disaccharose were decreased to about 0.34% nd 1.28% from a value of 1.34% and 2.69% in spring season. In Freising and Braunschweig, the concentration of reserved carbohydrates was less influenced by growing season. 4. Synthesis and accumulation pattern of nonstructural carbohydrates were shown a great respons to cutting frequency of the plants. Frequent cutting system under high temperature lowered the accumulation of reserved carbohydrates, especially fructosan and also caused to decrease the plant regrowth. However, under cool temperature, it shows a less differences of tructosan, mono-and disaccharose in the plants at all cutting systems.

  • PDF

Rootzone Profile, Trickle Irrigation System and Turfgrass Species for Roof Turf Garden (옥상녹화에 적합한 지반, 점적 관수 및 잔디 선정)

  • 이재필;한인송;주영규;윤원종;정종일;장진혁;김두환
    • Asian Journal of Turfgrass Science
    • /
    • v.17 no.4
    • /
    • pp.155-163
    • /
    • 2003
  • This study was conducted to find out suitable rootzone profile, irrigation system, and turfgrass species for roof turf garden. Treatments of profile with soil amendment were Mixture I: Perlite(PL)60%+Vermiculite(VC)20%+Peatmoss(PM)20%, Mixture II: PL60%+VC 10%+PM20%+Sand(SD)10%, Mixture III: PL60%+VC20%+PM20% and Mixture IV: PL60%+VC10%+PM20%+SD10%+Styrofoam 5cm as a drain layer. To test trickle irrigation for roof garden, intervals of main pipe spacing(50cm, 100cm) and drop hole distance(15, 20, 30, 50 and 100cm)were treated, To select most suitable turfgrass species or mixture, Bermudagrass 'Konwoo', Zoysiagrass 'Konhee' and cool-season grass(Kentucky Bluegrass 80% + Perennial Ryegrass 20%, Tall Fescue 30% + KB50% + PR 20%)were tested. In particle size analysis, the soil amendments Perlite and vermiculite showed very even distribution, however, peatmoss contained mostly coarse particles with fiber over $\Phi$ 4.75mm. Under field moisture condition, vermiculite and peatmoss showed 350% water holding capacity, on the other hand, sand or Perlite showed 115% and 166%, respectively. Total weight of soil profile was 139.2kg/$m^2$ with Styrofoam drain layer without sand, which showed most lightest among treatments. Turf quality also resulted positve with Styrofoam drain layer installation. On trickle irrigation system, the proper interval of main drain pipe spacing and drop hole distance were 50cm and 50cm, respectively, In irrigation frequency, once per a day for 15 minute irrigation with 2 1/hr showed the best results on turf quality. Among turfgrass species or cool season grass mixture, warm season turfgrass fine leaf type zoysiagrass 'Konhee' and Bermudagrass 'Konwoo' showed very acceptable result on all over the treatments of rootzone and irrigation system. To apply cool season grasses for the roof garden, advanced researches may be needed to establish the proper soil amendment, rootzone profile, and irrigation system, Application of Bermudagrass 'Konwoo' for roof turf garden also needs successive tests to overcome winter injuries.