본 논문에서는 매개변수가 더 적고, 빠르게 추정 가능한 MobileViT 기반 모델을 통해 사람 자세 추정 과업을 수행할 수 있는 모델을 제안한다. 기반 모델은 합성곱 신경망의 특징과 Vision Transformer의 특징이 결합한 구조를 통해 경량화된 성능을 입증한다. 본 연구에서 주요 매커니즘이 되는 Transformer는 그 기반의 모델들이 컴퓨터 비전 분야에서도 합성곱 신경망 기반의 모델들 대비 더 나은 성능을 보이며, 영향력이 커지게 되었다. 이는 사람 자세 추정 과업에서도 동일한 상황이며, Vision Transformer기반의 ViTPose가 COCO, OCHuman, MPII 등 사람 자세 추정 벤치마크에서 모두 최고 성능을 지키고 있는 것이 그 적절한 예시이다. 하지만 Vision Transformer는 매개변수의 수가 많고 상대적으로 많은 연산량을 요구하는 무거운 모델 구조를 가지고 있기 때문에, 학습에 있어 사용자에게 많은 비용을 야기시킨다. 이에 기반 모델은 Vision Transformer가 많은 계산량을 요구하는 부족한 Inductive Bias 계산 문제를 합성곱 신경망 구조를 통한 Local Representation으로 극복하였다. 최종적으로, 제안 모델은 MS COCO 사람 자세 추정 벤치마크에서 제공하는 Validation Set으로 ViTPose 대비 각각 5분의 1과 9분의 1만큼의 3.28GFLOPs, 972만 매개변수를 나타내었고, 69.4 Mean Average Precision을 달성하여 상대적으로 우수한 성능을 보였다.
국내 씬파일러(Thin Filer)의 수가 1200만명을 넘어서며, 금융 업계에서 씬파일러의 신용을 정확히 평가하여 우량고객을 선별해 대출을 공급하는 시도가 많아지고 있다. 특히, 차주의 신용정보에 존재하는 비선형성을 반영하여 채무불이행을 예측하기 위해서 다양한 머신러닝 알고리즘을 활용한 연구가 진행되고 있다. 그 중 그래프 신경망 구조(Graph Neural Network)는 일반적인 신용정보 외에 대출자 간의 네트워크 정보를 반영할 수 있다는 점에서 데이터가 부족한 씬파일러의 채무 불이행 예측에서 주목할 만하다. 그러나, 그래프 신경망을 활용한 기존의 연구들은 신용정보에 존재하는 다양한 범주형 변수를 적절히 처리하지 못했다는 한계가 있었다. 이에 본 연구는 범주형 변수의 맥락적 정보를 추출할 수 있는 트랜스포머 메커니즘(Transformer mechanism)과 대출자 간 네트워크 정보를 반영할 수 있는 그래프 합성곱 신경망(Graph Convolutional Network)를 결합하여 효과적으로 씬파일러의 채무 불이행 예측이 가능한 TeGCN (Transformer embedded Graph Convolutional Network)를 제안한다. TeGCN는 일반 대출자 데이터셋과 씬파일러 데이터셋에 대하여 모두 베이스 라인 모델 대비 높은 성능을 보였으며, 특히 씬파일러 채무 불이행 예측에 우수한 성능을 달성했다. 본 연구는 범주형 변수가 많은 신용정보와 데이터가 부족한 씬파일러의 특성에 적합한 모델 구조를 결합하여 높은 채무 불이행 예측 성능을 달성했다는 시사점이 있다. 이는 씬파일러의 금융소외문제를 해결하고 금융업계에서 씬파일러를 대상으로 추가적인 수익을 창출하는데 기여할 수 있을 것이다.
In this paper, we propose a new model for the conditional generation of music, considering key and rhythm, fundamental elements of music. MIDI sheet music is converted into a WAV format, which is then transformed into a Mel Spectrogram using the Short-Time Fourier Transform (STFT). Using this information, key and rhythm details are classified by passing through two Convolutional Neural Networks (CNNs), and this information is again fed into the Music Transformer. The key and rhythm details are combined by differentially multiplying the weights and the embedding vectors of the MIDI events. Several experiments are conducted, including a process for determining the optimal weights. This research represents a new effort to integrate essential elements into music generation and explains the detailed structure and operating principles of the model, verifying its effects and potentials through experiments. In this study, the accuracy for rhythm classification reached 94.7%, the accuracy for key classification reached 92.1%, and the Negative Likelihood based on the weights of the embedding vector resulted in 3.01.
본 논문에서는 합성곱 신경망과 주의집중 메커니즘을 결합하여 뇌파 신호로부터 감정적 스트레스 인식 성능을 향상시키는 방식을 제안한다. 제안하는 방식에서는 뇌파 신호를 5개의 주파수 영역으로 분해하고, 각 주파수 영역에 합성곱 신경망 계층을 사용하여 뇌파 특징의 공간정보를 획득한 후에 게이트 트랜스포머를 이용한 주의집중 메커니즘을 사용하여 각 주파수 대역에서 두드러진 주파수 정보를 학습하고, 주파수 간 대역 매핑을 통해 보완 주파수 정보를 학습하여 최종 주의집중 표현에 반영한다. DEAP 데이터세트와 6명의 피 실험자가 참여한 뇌파 스트레스 인식 실험을 통해, 제안된 방식이 기존 방식과 비교하여 뇌파 기반 스트레스 인식 성능 향상에 효과가 있음을 보여준다.
도시 상태를 탐지하기 위해서는 운송 수단 수, 교통 흐름등이 필수적으로 파악되어야 할 요소이다. 본 논문에서는 기존의 Mask R-CNN을 이용하여 다양한 차량의 형태를 학습하고, 드론으로 촬영한 도시항공 영상에서 특정 유형의 차량 들을 검출하는 시스템을 오늘날 NLP 분야에서 널리 쓰이게 된 Transformer 모델을 컴퓨터 비전 문제에 도입하여 기존의 컨볼루션 신경망보다 높은 성능을 보여준 Swin Transformer 모델을 이용하여 기존의 연구에서 보여주었던 검출 시스템 능력을 향상시켰다.
대장암의 조기 발견과 치료를 위해서는 정확한 폴립의 분할이 중요하나 다음과 같은 제약이 따른다. 개별 폴립의 위치, 크기 및 모양이 서로 상이하며, 모션 흐림 및 빛 반사와 같은 특정 상황에서 폴립과 주변 환경 간에 상당한 정도의 유사성이 존재한다. 인코더와 디코더 역할을 하는 Convolutional Neural Networks로 구성된 U-net은 이러한 한계를 극복하기 위해 다양하게 사용된다. 본 연구는 보다 정확한 폴립 분할을 위한 비전트랜스포머가 포함된 U-net 아키텍처를 제안하였고, 그 결과 제안된 방식은 표준 U-net 아키텍처보다 더 나은 성능을 보였음을 확인할 수 있었다.
The development of neural networks is evolving towards the adoption of transformer structures with attention modules. Hence, active research focused on extending the concept of lightweight neural network algorithms and hardware acceleration is being conducted for the transition from conventional convolutional neural networks to transformer-based networks. We present a survey of state-of-the-art research on lightweight neural network algorithms and hardware architectures to reduce memory usage and accelerate both inference and training. To describe the corresponding trends, we review recent studies on token pruning, quantization, and architecture tuning for the vision transformer. In addition, we present a hardware architecture that incorporates lightweight algorithms into artificial intelligence processors to accelerate processing.
KSII Transactions on Internet and Information Systems (TIIS)
/
제18권7호
/
pp.1907-1928
/
2024
In recent years, multi-focus image fusion has emerged as a prominent area of research, with transformers gaining recognition in the field of image processing. Current approaches encounter challenges such as boundary artifacts, loss of detailed information, and inaccurate localization of focused regions, leading to suboptimal fusion outcomes necessitating subsequent post-processing interventions. To address these issues, this paper introduces a novel multi-focus image fusion technique leveraging the Swin Transformer architecture. This method integrates a frequency layer utilizing Wavelet Transform, enhancing performance in comparison to conventional Swin Transformer configurations. Additionally, to mitigate the deficiency of local detail information within the attention mechanism, Convolutional Neural Networks (CNN) are incorporated to enhance region recognition accuracy. Comparative evaluations of various fusion methods across three datasets were conducted in the paper. The experimental findings demonstrate that the proposed model outperformed existing techniques, yielding superior quality in the resultant fused images.
한국에서 청각장애인은 지체장애인에 이어 두 번째로 많은 등록 장애인 그룹이다. 하지만 수어 기계 번역은 시장 성장성이 작고, 엄밀하게 주석처리가 된 데이터 세트가 부족해 발전 속도가 더디다. 한편, 최근 컴퓨터 비전과 패턴 인식 분야에서 트랜스포머를 사용한 모델이 많이 제안되고 있는데, 트랜스포머를 이용한 모델은 동작 인식, 비디오 분류 등의 분야에서 높은 성능을 보여오고 있다. 이에 따라 수어 기계 번역 분야에서도 트랜스포머를 도입하여 성능을 개선하려는 시도들이 제안되고 있다. 본 논문에서는 수어 번역을 위한 인식 부분을 트랜스포머와 3D-CNN을 융합한 3D-CvT를 제안한다. 또, PHOENIX-Wether-2014T [1]를 이용한 실험을 통해 제안 모델은 기존 모델보다 적은 연산량으로도 비슷한 번역 성능을 보이는 효율적인 모델임을 실험적으로 증명하였다.
Sentinel-2는 분광파장대나 공간해상도 측면에서 우리나라 차세대중형위성 4호(농림위성)의 모의영상으로 활용될 수 있다. 이 단보에서는 향후 농림위성영상에 적용하기 위한 예비실험으로, 딥러닝 기술을 이용한 Sentinel-2 영상의 구름탐지를 수행하였다. 전통적인 Convolutional Neural Network (CNN) 모델인 DeepLabV3+와 최신의 Transformer 모델인 Shifted Windows (Swin) Transformer를 이용한 구름탐지 모델을 구축하고, Radiant Earth Foundation (REF)에서 제공하는 22,728장의 학습자료에 대한 암맹평가를 실시하였다. Swin Transformer 모델은 0.886의 정밀도와 0.875의 재현율로, 과탐지와 미탐지가 어느 한쪽으로 치우치지 않는 경향을 보였다. 딥러닝 기반 구름탐지는 향후 우리나라 중심의 실험을 거쳐 농림위성 영상에 활용될 수 있을 것으로 기대된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.