• 제목/요약/키워드: Convolutional Neural Networks(CNN)

검색결과 356건 처리시간 0.025초

랜덤 변환에 대한 컨볼루션 뉴럴 네트워크를 이용한 특징 추출 (Feature Extraction Using Convolutional Neural Networks for Random Translation)

  • 진태석
    • 한국산업융합학회 논문집
    • /
    • 제23권3호
    • /
    • pp.515-521
    • /
    • 2020
  • Deep learning methods have been effectively used to provide great improvement in various research fields such as machine learning, image processing and computer vision. One of the most frequently used deep learning methods in image processing is the convolutional neural networks. Compared to the traditional artificial neural networks, convolutional neural networks do not use the predefined kernels, but instead they learn data specific kernels. This property makes them to be used as feature extractors as well. In this study, we compared the quality of CNN features for traditional texture feature extraction methods. Experimental results demonstrate the superiority of the CNN features. Additionally, the recognition process and result of a pioneering CNN on MNIST database are presented.

Convolutional Neural Network (CNN) 기반의 단백질 간 상호 작용 추출 (Extraction of Protein-Protein Interactions based on Convolutional Neural Network (CNN))

  • 최성필
    • 정보과학회 컴퓨팅의 실제 논문지
    • /
    • 제23권3호
    • /
    • pp.194-198
    • /
    • 2017
  • 본 논문에서는 학술 문헌에서 표현된 단백질 간 상호 작용(Protein-Protein Interaction) 정보를 자동으로 추출하기 위한 확장된 형태의 Convolutional Neural Network (CNN) 모델을 제안한다. 이 모델은 기존에 관계 추출(Relation Extraction)을 위해 고안된 단순 자질 기반의 CNN 모델을 확장하여 다양한 전역 자질들을 추가적으로 적용함으로써 성능을 개선할 수 있는 장점이 있다. PPI 추출 성능 평가를 위해서 많이 활용되고 있는 준거 평가 컬렉션인 AIMed를 이용한 실험에서 F-스코어 기준으로 78.0%를 나타내어 현재까지 도출된 세계 최고 성능에 비해 8.3% 높은 성능을 나타내었다. 추가적으로 CNN 모델이 복잡한 언어 처리를 통한 자질 추출 작업을 하지 않고도 단백질간 상호 작용 추출에 높은 성능을 나타냄을 보였다.

능동소나 스펙트로그램 이미지와 CNN을 사용한 표적/비표적 식별 (Target/non-target classification using active sonar spectrogram image and CNN)

  • 김동욱;석종원;배건성
    • 전기전자학회논문지
    • /
    • 제22권4호
    • /
    • pp.1044-1049
    • /
    • 2018
  • CNN(Convolutional Neural Networks)은 동물의 시각정보처리과정을 모델링한 신경망으로 다양한 분야에서 좋은 성능을 보여주고 있다. 본 논문에서는 CNN을 사용하여 능동소나 신호의 스펙트로그램을 분석하고, 표적과 비표적을 식별하는 연구를 수행하였다. 데이터를 표적이 포함된 비율에 따라 8클래스로 구분하고, CNN의 학습에 사용하였다. 신호의 스펙트로그램을 프레임별로 나누어 입력으로 사용한 결과, 표적신호의 위치에서만 표적신호에 해당하는 7개 클래스의 식별 결과가 순차적으로 나타나는 특성을 사용하여 표적과 비표적을 식별해낼 수 있었다.

CPU 기반의 딥러닝 컨볼루션 신경망을 이용한 이륜 차량 번호판 인식 알고리즘 (Twowheeled Motor Vehicle License Plate Recognition Algorithm using CPU based Deep Learning Convolutional Neural Network)

  • 김진호
    • 디지털산업정보학회논문지
    • /
    • 제19권4호
    • /
    • pp.127-136
    • /
    • 2023
  • Many research results on the traffic enforcement of illegal driving of twowheeled motor vehicles using license plate recognition are introduced. Deep learning convolutional neural networks can be used for character and word recognition of license plates because of better generalization capability compared to traditional Backpropagation neural networks. In the plates of twowheeled motor vehicles, the interdependent government and city words are included. If we implement the mutually independent word recognizers using error correction rules for two word recognition results, efficient license plate recognition results can be derived. The CPU based convolutional neural network without library under real time processing has an advantage of low cost real application compared to GPU based convolutional neural network with library. In this paper twowheeled motor vehicle license plate recognition algorithm is introduced using CPU based deep-learning convolutional neural network. The experimental results show that the proposed plate recognizer has 96.2% success rate for outdoor twowheeled motor vehicle images in real time.

계층적 CNN을 이용한 방송 매체 내의 객체 인식 시스템 성능향상 방안 (Performance Improvement of Object Recognition System in Broadcast Media Using Hierarchical CNN)

  • 권명규;양효식
    • 디지털융복합연구
    • /
    • 제15권3호
    • /
    • pp.201-209
    • /
    • 2017
  • 본 논문은 계층적 Convolutional Nerual Network(CNN)을 이용한 스마트폰용 객체 인식 시스템이다. 전체적인 구성은 스마트폰과 서버를 연결하여 서버에서 컨볼루셔널 뉴럴 네트워크로 객체 인식을 하고 수집된 데이터를 매칭시켜 스마트폰으로 객체의 상세정보를 전달하는 방법이다. 또한 계층적 컨볼루셔널 뉴럴 네트워크와 단편적 컨볼루셔널 뉴럴 네트워크와 비교하였다. 계층적 컨볼루셔널 뉴럴 네트워크는 88%, 단편적 컨볼루셔널 뉴럴 네트워크는 73%의 정확도를 가지며 15%p의 성능 향상을 보였다. 이를 기반으로 스마트폰과 방송매체와 연동한 T-Commerce 시장 확장의 가능성을 보여준다. 아울러 방송영상을 시청하면서 Information Retrieval, AR/VR 서비스도 제공 가능하다.

신용 데이터의 이미지 변환을 활용한 합성곱 신경망과 설명 가능한 인공지능(XAI)을 이용한 개인신용평가 (A Personal Credit Rating Using Convolutional Neural Networks with Transformation of Credit Data to Imaged Data and eXplainable Artificial Intelligence(XAI))

  • 원종관;홍태호;배경일
    • 한국정보시스템학회지:정보시스템연구
    • /
    • 제30권4호
    • /
    • pp.203-226
    • /
    • 2021
  • Purpose The purpose of this study is to enhance the accuracy score of personal credit scoring using the convolutional neural networks and secure the transparency of the deep learning model using eXplainalbe Artifical Inteligence(XAI) technique. Design/methodology/approach This study built a classification model by using the convolutional neural networks(CNN) and applied a methodology that is transformation of numerical data to imaged data to apply CNN on personal credit data. Then layer-wise relevance propagation(LRP) was applied to model we constructed to find what variables are more influenced to the output value. Findings According to the empirical analysis result, this study confirmed that accuracy score by model using CNN is highest among other models using logistic regression, neural networks, and support vector machines. In addition, With the LRP that is one of the technique of XAI, variables that have a great influence on calculating the output value for each observation could be found.

CNN 모형을 이용한 서울 아파트 가격 예측과 그 요인 (Prediction and factors of Seoul apartment price using convolutional neural networks)

  • 이현재;손동희;김수진;오세인;김재직
    • 응용통계연구
    • /
    • 제33권5호
    • /
    • pp.603-614
    • /
    • 2020
  • 본 연구는 이미지 데이터에 대한 예측 모형으로 뛰어난 성능을 보여온 convolutional neural networks (CNN) 모형을 이용하여 서울 아파트 가격의 예측과 서울 각 지역 아파트들의 가격결정요인들을 연구한다. 이를 위해 강, 녹지, 고도와 같은 자연환경요인, 버스정류장, 지하철역, 상권, 학교 등과 같은 기반시설요소, 일자리수, 범죄율 등의 사회경제요소들을 설명변수로 고려하고, CNN 모형이 이미지 데이터에 좋은 성능을 보여온 것을 기반으로 이 설명변수들의 값들을 CNN 모형 입력층으로써 이미지 채널의 픽셀값과 같은 역할을 하도록 변환하여 아파트 가격의 예측과 가격결정요인에 대한 해석을 시도한다. 덧붙여 본 연구에서 사용된 CNN 모형은 자연환경요인과 기반시설요인 변수들을 각 아파트를 중심으로 하는 각 입력층의 채널에 이진의 이미지로 표현함으로써 각 아파트의 공간적인 특성을 고려할 수 있다.

객체 검출을 위한 CNN과 YOLO 성능 비교 실험 (Comparison of CNN and YOLO for Object Detection)

  • 이용환;김영섭
    • 반도체디스플레이기술학회지
    • /
    • 제19권1호
    • /
    • pp.85-92
    • /
    • 2020
  • Object detection plays a critical role in the field of computer vision, and various researches have rapidly increased along with applying convolutional neural network and its modified structures since 2012. There are representative object detection algorithms, which are convolutional neural networks and YOLO. This paper presents two representative algorithm series, based on CNN and YOLO which solves the problem of CNN bounding box. We compare the performance of algorithm series in terms of accuracy, speed and cost. Compared with the latest advanced solution, YOLO v3 achieves a good trade-off between speed and accuracy.

컬러 입력 영상을 갖는 Convolutional Neural Networks를 이용한 QFN 납땜 불량 검출 (QFN Solder Defect Detection Using Convolutional Neural Networks with Color Input Images)

  • 김호중;조태훈
    • 반도체디스플레이기술학회지
    • /
    • 제15권3호
    • /
    • pp.18-23
    • /
    • 2016
  • QFN (Quad Flat No-leads Package) is one of the SMD (Surface Mount Device). Since there is no lead in QFN, there are many defects on solder. Therefore, we propose an efficient mechanism for QFN solder defect detection at this paper. For this, we employ Convolutional Neural Network (CNN) of the Machine Learning algorithm. QFN solder's color multi-layer images are used to train CNN. Since these images are 3-channel color images, they have a problem with applying to CNN. To solve this problem, we used each 1-channel grayscale image (Red, Green, Blue) that was separated from 3-channel color images. We were able to detect QFN solder defects by using this CNN. In this paper, it is shown that the CNN is superior to the conventional multi-layer neural networks in detecting QFN solder defects. Later, further research is needed to detect other QFN.

사이드 스캔 소나 영상에서 수중물체 자동 탐지를 위한 컨볼루션 신경망 기법 적용 (The application of convolutional neural networks for automatic detection of underwater object in side scan sonar images)

  • 김정문;최지웅;권혁종;오래근;손수욱
    • 한국음향학회지
    • /
    • 제37권2호
    • /
    • pp.118-128
    • /
    • 2018
  • 본 논문은 사이드 스캔 소나 영상을 컨볼루션 신경망으로 학습하여 수중물체를 탐색하는 방법을 다루었다. 사이드 스캔 소나 영상을 사람이 직접 분석하던 방법에서 컨볼루션 신경망 알고리즘이 보강되면 분석의 효율성을 높일 수 있다. 연구에 사용한 사이드 스캔 소나의 영상 데이터는 미 해군 수상전센터에서 공개한 자료이고 4종류의 합성수중물체로 구성되었다. 컨볼루션 신경망 알고리즘은 관심영역 기반으로 학습하는 Faster R-CNN(Region based Convolutional Neural Networks)을 기본으로 하며 신경망의 세부사항을 보유한 데이터에 적합하도록 구성하였다. 연구의 결과를 정밀도-재현율 곡선으로 비교하였고 소나 영상 데이터에 지정한 관심영역의 변경이 탐지성능에 미치는 영향을 검토함으로써 컨볼루션 신경망의 수중물체 탐지 적용성에 대해 살펴보았다.