• Title/Summary/Keyword: Convolutional Codes

Search Result 132, Processing Time 0.021 seconds

Performance of Convolutionally-Coded MIMO Systems with Antenna Selection

  • Hamouda Walaa;Ghrayeb Ali
    • Journal of Communications and Networks
    • /
    • v.7 no.3
    • /
    • pp.307-312
    • /
    • 2005
  • In this work, we study the performance of a serial concatenated scheme comprising a convolutional code (CC) and an orthogonal space-time block code (STBC) separated by an inter-leaver. Specifically, we derive performance bounds for this concatenated scheme, clearly quantify the impact of using a CC in conjunction with a STBC, and compare that to using a STBC code only. Furthermore, we examine the impact of performing antenna selection at the receiver on the diversity order and coding gain of the system. In performing antenna selection, we adopt a selection criterion that is based on maximizing the instantaneous signal-to­noise ratio (SNR) at the receiver. That is, we select a subset of the available receive antennas that maximizes the received SNR. Two channel models are considered in this study: Fast fading and quasi-static fading. For both cases, our analyses show that substantial coding gains can be achieved, which is confirmed through Monte-Carlo simulations. We demonstrate that the spatial diversity is maintained for all cases, whereas the coding gain deteriorates by no more than $10\;log_{10}$ (M / L) dB, all relative to the full complexity multiple-input multiple-output (MIMO) system.

Design of an Area-Efficient Survivor Path Unit for Viterbi Decoder Supporting Punctured Codes (천공 부호를 지원하는 Viterbi 복호기의 면적 효율적인 생존자 경로 계산기 설계)

  • Kim, Sik;Hwang, Sun-Young
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.3A
    • /
    • pp.337-346
    • /
    • 2004
  • Punctured convolutional codes increase transmission efficiency without increasing hardware complexity. However, Viterbi decoder supporting punctured codes requires long decoding length and large survivor memory to achieve sifficiently low bit error rate (BER), when compared to the Viterbi decoder for a rate 1/2 convolutional code. This Paper presents novel architecture adopting a pipelined trace-forward unit reducing survivor memory requirements in the Viterbi decoder. The proposed survivor path architecture reduces the memory requirements by removing the initial decoding delay needed to perform trace-back operation and by accelerating the trace-forward process to identify the survivor path in the Viterbi decoder. Experimental results show that the area of survivor path unit has been reduced by 16% compared to that of conventional hybrid survivor path unit.

Analysis Performance of Convolutional Code and Turbo code Using The Semi-Random Interleaver (길쌈부호와 세미 랜덤 인터리버를 사용한 터보코드의 성능분석)

  • 홍성원
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.5 no.6
    • /
    • pp.1184-1189
    • /
    • 2001
  • In this paper was analyzed the performance of turbo code using semi-random interleaver which proposed a reference numbers 11. Which was analyzed comparison the performance of between the current mobile communication system had been used the viterbe decoding algorithm of convolutional code and turbo codes when fixed constraint length. The result was defined that the performance of turbo code rose a $E_{b/}$ $N_{o}$=4.7[㏈] than convolutional code, when convolutional code and turbo code was fixed by BER = 10$^{-4}$ and constraint length K 5.5.5.

  • PDF

Unequal Bit - Error - Probability of Convolutional codes and its Application (길쌈부호의 부등 오류 특성 및 그 응용)

  • Lee, Soo-In;Lee, Sang-Gon;Moon, Sang-Jae
    • Proceedings of the KIEE Conference
    • /
    • 1988.07a
    • /
    • pp.194-197
    • /
    • 1988
  • The unequal bit-error-probability of rate r=b/n binary convolutional code is analyzed. The error protection affored each digit of the b-tuple information word can be different from that afforded other digit. The property of the unequal protection can be applied to transmitting sampled data in PCM system.

  • PDF

Performance Analysis of Asymmetric Turbo Codes Using SOVA Decoding Algorithm (SOVA 복호방법을 이용한 비대칭구조 터보부호의 성능분석)

  • 신한균;강수훈;최회동;노종선
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.4A
    • /
    • pp.553-557
    • /
    • 2000
  • It is known that turbo codes have an error-floor bound according to the effective free distance at high SNR. But the performance for turbo codes in the water-fall area at low SHR has not been studied yet. In this paper, asymmetric turbo codes that consist of RSC(recursive systematic convolutional) codes with different constraint length are proposed and their performance is analysed for SOVA decoding algorithm.

  • PDF

An Efficient UEP Transmission Scheme for MIMO-OFDM Systems (MIMO-OFDM 시스템을 위한 효율적인 UEP 전송기법 제안)

  • Lee, Heun-Chul;Lee, Byeong-Si;Sundberg, Carl-Erik W.;Lee, In-Kyu
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.5C
    • /
    • pp.469-477
    • /
    • 2007
  • Most multimedia source coders exhibit unequal bit error sensitivity. Efficient transmission system design should therefore incorporate the use of matching unequal error protection (UEP). In this paper, we present and evaluate a flexible space-time coding system with unequal error protection. Multiple transmit and receive antennas and bit-interleaved coded modulation techniques are used combined with rate compatible punctured convolutional codes. A near optimum iterative receiver is employed with a multiple-in multiple-out inverse mapper and a MAP decoder as component decoders. We illustrate how the UEP system gain can be achieved either as a power or bandwidth gain compared to the equal error protection system (EEP) for the identical source and equal overall quality for both the UEP and EEP systems. An example with two/three transmit and two receive antennas using BPSK modulation is given for the block fading channel.

Performance analysis of turbo codes based on underwater experimental data (수중 실험 데이터 기반 터보 부호 성능 분석)

  • Sung, Ha-Hyun;Jung, Ji-Won
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.1
    • /
    • pp.45-49
    • /
    • 2016
  • The performance of underwater acoustic communication systems is sensitive to inter-symbol interference caused by delay spread developed from multipath signal propagation. The multipath nature of underwater channels causes signal distortion and error floor. In order to improve the performance, it is necessary to employ an iterative coding scheme. Of the various iterative coding schemes, turbo code and convolutional code based on the BCJR algorithm have recently dominated this application. In this study, the performance of iterative codes based on turbo equalizers with equivalent coding rates and similar code word lengths were analyzed. Underwater acoustic communication system experiments using these two coding techniques were conducted on Kyeong-chun Lake in Munkyeong City. The distance between the transmitter and receiver was 400 m, and the data transfer rate was 1 Kbps. The experimental results revealed that the performance of turbo codes is better for channeling than that of convolutional codes that use a BCJR decoding algorithm.

Interleaving for Viterbi Decoding in the Rayleigh Fading Channel (레일리 페이딩 채널에서의 Viterbi 복호를 위한 인터리빙)

  • 이상곤;전중인;문상재
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.15 no.12
    • /
    • pp.963-972
    • /
    • 1990
  • Burst errors is a major cause of the performance degradation of digital mobile radio communication over the Rayleigh fading channel. Convoluational codes with block interleaving can be employed to reduce the degredation. This paper has studied the randomness of errors and applied the interleaving to the Viterbi decoders of convolutional codes, Good interleavers for the r=3/4, L=7 convolution code has been searched through computer simulation.

  • PDF

Space-Time Concatenated Convolutional and Differential Codes with Interference Suppression for DS-CDMA Systems (간섭 억제된 DS-CDMA 시스템에서의 시공간 직렬 연쇄 컨볼루션 차등 부호 기법)

  • Yang, Ha-Yeong;Sin, Min-Ho;Song, Hong-Yeop;Hong, Dae-Sik;Gang, Chang-Eon
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.39 no.1
    • /
    • pp.1-10
    • /
    • 2002
  • A space-time concatenated convolutional and differential coding scheme is employed in a multiuser direct-sequence code-division multiple-access(DS-CDMA) system. The system consists of single-user detectors (SUD), which are used to suppress multiple-access interference(MAI) with no requirement of other users' spreading codes, timing, or phase information. The space-time differential code, treated as a convolutional code of code rate 1 and memory 1, does not sacrifice the coding efficiency and has the least number of states. In addition, it brings a diversity gain through the space-time processing with a simple decoding process. The iterative process exchanges information between the differential decoder and the convolutional decoder. Numerical results show that this space-time concatenated coding scheme provides better performance and more flexibility than conventional convolutional codes in DS-CDMA systems, even in the sense of similar complexity Further study shows that the performance of this coding scheme applying to DS-CDMA systems with SUDs improves by increasing the processing gain or the number of taps of the interference suppression filter, and degrades for higher near-far interfering power or additional near-far interfering users.

New Stop Criterion for Reduce of Decoding Delay of Turbo Codes (터보부호의 복호지연 감소를 위한 새로운 반복중단 알고리즘)

  • Shim B. S.;Lee W. B.;Jeong D. H.;Lim S. J.;Kim T. H.;Kim H. Y.
    • Proceedings of the IEEK Conference
    • /
    • 2004.06a
    • /
    • pp.39-42
    • /
    • 2004
  • Turbo codes, proposed by Berrou, that increase the interleaver size and the number of iteration have better than conventional convolutional codes, in case of BER performance. However, because turbo codes has been required much decoding delay to increase iteration number, it demands unnecessary iterative decoding. Therefore, in this paper, we propose iterative decoding stop criterion that uses the variance of absolute value of LLR. This algorithm can be reduced average iterative decoding number and had lossless performance of BER, because of decreasing unnecessary iterative decoding.

  • PDF