• Title/Summary/Keyword: Convolution Matching

Search Result 19, Processing Time 0.022 seconds

Development of a Data Reduction Algorithm for Optical Wide Field Patrol (OWL) II: Improving Measurement of Lengths of Detected Streaks

  • Park, Sun-Youp;Choi, Jin;Roh, Dong-Goo;Park, Maru;Jo, Jung Hyun;Yim, Hong-Suh;Park, Young-Sik;Bae, Young-Ho;Park, Jang-Hyun;Moon, Hong-Kyu;Choi, Young-Jun;Cho, Sungki;Choi, Eun-Jung
    • Journal of Astronomy and Space Sciences
    • /
    • v.33 no.3
    • /
    • pp.221-227
    • /
    • 2016
  • As described in the previous paper (Park et al. 2013), the detector subsystem of optical wide-field patrol (OWL) provides many observational data points of a single artificial satellite or space debris in the form of small streaks, using a chopper system and a time tagger. The position and the corresponding time data are matched assuming that the length of a streak on the CCD frame is proportional to the time duration of the exposure during which the chopper blades do not obscure the CCD window. In the previous study, however, the length was measured using the diagonal of the rectangle of the image area containing the streak; the results were quite ambiguous and inaccurate, allowing possible matching error of positions and time data. Furthermore, because only one (position, time) data point is created from one streak, the efficiency of the observation decreases. To define the length of a streak correctly, it is important to locate the endpoints of a streak. In this paper, a method using a differential convolution mask pattern is tested. This method can be used to obtain the positions where the pixel values are changed sharply. These endpoints can be regarded as directly detected positional data, and the number of data points is doubled by this result.

Statistical Model of 3D Positions in Tracking Fast Objects Using IR Stereo Camera (적외선 스테레오 카메라를 이용한 고속 이동객체의 위치에 대한 확률모델)

  • Oh, Jun Ho;Lee, Sang Hwa;Lee, Boo Hwan;Park, Jong-Il
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.1
    • /
    • pp.89-101
    • /
    • 2015
  • This paper proposes a statistical model of 3-D positions when tracking moving targets using the uncooled infrared (IR) stereo camera system. The proposed model is derived from two errors. One is the position error which is caused by the sampling pixels in the digital image. The other is the timing jitter which results from the irregular capture-timing in the infrared cameras. The capture-timing in the IR camera is measured using the jitter meter designed in this paper, and the observed jitters are statistically modeled as Gaussian distribution. This paper derives an integrated probability distribution by combining jitter error with pixel position error. The combined error is modeled as the convolution of two error distributions. To verify the proposed statistical position error model, this paper has some experiments in tracking moving objects with IR stereo camera. The 3-D positions of object are accurately measured by the trajectory scanner, and 3-D positions are also estimated by stereo matching from IR stereo camera system. According to the experiments, the positions of moving object are estimated within the statistically reliable range which is derived by convolution of two probability models of pixel position error and timing jitter respectively. It is expected that the proposed statistical model can be applied to estimate the uncertain 3-D positions of moving objects in the diverse fields.

Virtual core point detection and ROI extraction for finger vein recognition (지정맥 인식을 위한 가상 코어점 검출 및 ROI 추출)

  • Lee, Ju-Won;Lee, Byeong-Ro
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.10 no.3
    • /
    • pp.249-255
    • /
    • 2017
  • The finger vein recognition technology is a method to acquire a finger vein image by illuminating infrared light to the finger and to authenticate a person through processes such as feature extraction and matching. In order to recognize a finger vein, a 2D mask-based two-dimensional convolution method can be used to detect a finger edge but it takes too much computation time when it is applied to a low cost micro-processor or micro-controller. To solve this problem and improve the recognition rate, this study proposed an extraction method for the region of interest based on virtual core points and moving average filtering based on the threshold and absolute value of difference between pixels without using 2D convolution and 2D masks. To evaluate the performance of the proposed method, 600 finger vein images were used to compare the edge extraction speed and accuracy of ROI extraction between the proposed method and existing methods. The comparison result showed that a processing speed of the proposed method was at least twice faster than those of the existing methods and the accuracy of ROI extraction was 6% higher than those of the existing methods. From the results, the proposed method is expected to have high processing speed and high recognition rate when it is applied to inexpensive microprocessors.

A linear array SliM-II image processor chip (선형 어레이 SliM-II 이미지 프로세서 칩)

  • 장현만;선우명훈
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.35C no.2
    • /
    • pp.29-35
    • /
    • 1998
  • This paper describes architectures and design of a SIMD type parallel image processing chip called SliM-II. The chiphas a linear array of 64 processing elements (PEs), operates at 30 MHz in the worst case simulation and gives at least 1.92 GIPS. In contrast to existing array processors, such as IMAP, MGAP-2, VIP, etc., each PE has a multiplier that is quite effective for convolution, template matching, etc. The instruction set can execute an ALU operation, data I/O, and inter-PE communication simulataneously in a single instruction cycle. In addition, during the ALU/multiplier operation, SliM-II provides parallel move between the register file and on-chip memory as in DSP chips, SliM-II can greatly reduce the inter-PE communication overhead, due to the idea a sliding, which is a technique of overlapping inter-PE communication with computation. Moreover, the bandwidth of data I/O and inter-PE communication increases due to bit-parallel data paths. We used the COMPASS$^{TM}$ 3.3 V 0.6.$\mu$m standrd cell library (v8r4.10). The total number of transistors is about 1.5 muillions, the core size is 13.2 * 13.0 mm$^{2}$ and the package type is 208 pin PQ2 (Power Quad 2). The performance evaluation shows that, compared to a existing array processors, a proposed architeture gives a significant improvement for algorithms requiring multiplications.s.

  • PDF

Parallel Multi-task Cascade Convolution Neural Network Optimization Algorithm for Real-time Dynamic Face Recognition

  • Jiang, Bin;Ren, Qiang;Dai, Fei;Zhou, Tian;Gui, Guan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.10
    • /
    • pp.4117-4135
    • /
    • 2020
  • Due to the angle of view, illumination and scene diversity, real-time dynamic face detection and recognition is no small difficulty in those unrestricted environments. In this study, we used the intrinsic correlation between detection and calibration, using a multi-task cascaded convolutional neural network(MTCNN) to improve the efficiency of face recognition, and the output of each core network is mapped in parallel to a compact Euclidean space, where distance represents the similarity of facial features, so that the target face can be identified as quickly as possible, without waiting for all network iteration calculations to complete the recognition results. And after the angle of the target face and the illumination change, the correlation between the recognition results can be well obtained. In the actual application scenario, we use a multi-camera real-time monitoring system to perform face matching and recognition using successive frames acquired from different angles. The effectiveness of the method was verified by several real-time monitoring experiments, and good results were obtained.

Measurement Technique of Indoor location Based on Markerless applicable to AR (AR에 적용 가능한 마커리스 기반의 실내 위치 측정 기법)

  • Kim, Jae-Hyeong;Lee, Seung-Ho
    • Journal of IKEEE
    • /
    • v.25 no.2
    • /
    • pp.243-251
    • /
    • 2021
  • In this paper, we propose a measurement technique of indoor location based on markerless applicable to AR. The proposed technique has the following originality. The first is to extract feature points and use them to generate local patches to enable faster computation by learning and using only local patches that are more useful than the surroundings without learning the entire image. Second, learning is performed through deep learning using the convolution neural network structure to improve accuracy by reducing the error rate. Third, unlike the existing feature point matching technique, it enables indoor location measurement including left and right movement. Fourth, since the indoor location is newly measured every frame, errors occurring in the front side during movement are prevented from accumulating. Therefore, it has the advantage that the error between the final arrival point and the predicted indoor location does not increase even if the moving distance increases. As a result of the experiment conducted to evaluate the time required and accuracy of the measurement technique of indoor location based on markerless applicable to AR proposed in this paper, the difference between the actual indoor location and the measured indoor location is an average of 12.8cm and a maximum of 21.2cm. As measured, the indoor location measurement accuracy was better than that of the existing IEEE paper. In addition, it was determined that it was possible to measure the user's indoor location in real time by displaying the measured result at 20 frames per second.

Stereo-based Robust Human Detection on Pose Variation Using Multiple Oriented 2D Elliptical Filters (방향성 2차원 타원형 필터를 이용한 스테레오 기반 포즈에 강인한 사람 검출)

  • Cho, Sang-Ho;Kim, Tae-Wan;Kim, Dae-Jin
    • Journal of KIISE:Software and Applications
    • /
    • v.35 no.10
    • /
    • pp.600-607
    • /
    • 2008
  • This paper proposes a robust human detection method irrespective of their pose variation using the multiple oriented 2D elliptical filters (MO2DEFs). The MO2DEFs can detect the humans regardless of their poses unlike existing object oriented scale adaptive filter (OOSAF). To overcome OOSAF's limitation, we introduce the MO2DEFs whose shapes look like the oriented ellipses. We perform human detection by applying four different 2D elliptical filters with specific orientations to the 2D spatial-depth histogram and then by taking the thresholds over the filtered histograms. In addition, we determine the human pose by using convolution results which are computed by using the MO2DEFs. We verify the human candidates by either detecting the face or matching head-shoulder shapes over the estimated rotation. The experimental results showed that the accuracy of pose angle estimation was about 88%, the human detection using the MO2DEFs outperformed that of using the OOSAF by $15{\sim}20%$ especially in case of the posed human.

Inversion of Acoustical Properties of Sedimentary Layers from Chirp Sonar Signals (Chirp 신호를 이용한 해저퇴적층의 음향학적 특성 역산)

  • 박철수;성우제
    • The Journal of the Acoustical Society of Korea
    • /
    • v.18 no.8
    • /
    • pp.32-41
    • /
    • 1999
  • In this paper, an inversion method using chirp signals and two near field receivers is proposed. Inversion problems can be formulated into the probabilistic models composed of signals, a forward model and noise. Forward model to simulate chirp signals is chosen to be the source-wavelet-convolution planewave modeling method. The solution of the inversion problem is defined by a posteriori pdf. The wavelet matching technique, using weighted least-squares fitting, estimates the sediment sound-speed and thickness on which determination of the ranges for a priori uniform distribution is based. The genetic algorithm can be applied to a global optimization problem to find a maximum a posteriori solution for determined a priori search space. Here the object function is defined by an L₂norm of the difference between measured and modeled signals. The observed signals can be separated into a set of two signals reflected from the upper and lower boundaries of a sediment. The separation of signals and successive applications of the genetic algorithm optimization process reduce the search space, therefore improving the inversion results. Not only the marginal pdf but also the statistics are calculated by numerical evaluation of integrals using the samples selected during importance sampling process of the genetic algorithm. The examples applied here show that, for synthetic data with noise, it is possible to carry out an inversion for sedimentary layers using the proposed inversion method.

  • PDF

Anomaly Detection for User Action with Generative Adversarial Networks (적대적 생성 모델을 활용한 사용자 행위 이상 탐지 방법)

  • Choi, Nam woong;Kim, Wooju
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.3
    • /
    • pp.43-62
    • /
    • 2019
  • At one time, the anomaly detection sector dominated the method of determining whether there was an abnormality based on the statistics derived from specific data. This methodology was possible because the dimension of the data was simple in the past, so the classical statistical method could work effectively. However, as the characteristics of data have changed complexly in the era of big data, it has become more difficult to accurately analyze and predict the data that occurs throughout the industry in the conventional way. Therefore, SVM and Decision Tree based supervised learning algorithms were used. However, there is peculiarity that supervised learning based model can only accurately predict the test data, when the number of classes is equal to the number of normal classes and most of the data generated in the industry has unbalanced data class. Therefore, the predicted results are not always valid when supervised learning model is applied. In order to overcome these drawbacks, many studies now use the unsupervised learning-based model that is not influenced by class distribution, such as autoencoder or generative adversarial networks. In this paper, we propose a method to detect anomalies using generative adversarial networks. AnoGAN, introduced in the study of Thomas et al (2017), is a classification model that performs abnormal detection of medical images. It was composed of a Convolution Neural Net and was used in the field of detection. On the other hand, sequencing data abnormality detection using generative adversarial network is a lack of research papers compared to image data. Of course, in Li et al (2018), a study by Li et al (LSTM), a type of recurrent neural network, has proposed a model to classify the abnormities of numerical sequence data, but it has not been used for categorical sequence data, as well as feature matching method applied by salans et al.(2016). So it suggests that there are a number of studies to be tried on in the ideal classification of sequence data through a generative adversarial Network. In order to learn the sequence data, the structure of the generative adversarial networks is composed of LSTM, and the 2 stacked-LSTM of the generator is composed of 32-dim hidden unit layers and 64-dim hidden unit layers. The LSTM of the discriminator consists of 64-dim hidden unit layer were used. In the process of deriving abnormal scores from existing paper of Anomaly Detection for Sequence data, entropy values of probability of actual data are used in the process of deriving abnormal scores. but in this paper, as mentioned earlier, abnormal scores have been derived by using feature matching techniques. In addition, the process of optimizing latent variables was designed with LSTM to improve model performance. The modified form of generative adversarial model was more accurate in all experiments than the autoencoder in terms of precision and was approximately 7% higher in accuracy. In terms of Robustness, Generative adversarial networks also performed better than autoencoder. Because generative adversarial networks can learn data distribution from real categorical sequence data, Unaffected by a single normal data. But autoencoder is not. Result of Robustness test showed that he accuracy of the autocoder was 92%, the accuracy of the hostile neural network was 96%, and in terms of sensitivity, the autocoder was 40% and the hostile neural network was 51%. In this paper, experiments have also been conducted to show how much performance changes due to differences in the optimization structure of potential variables. As a result, the level of 1% was improved in terms of sensitivity. These results suggest that it presented a new perspective on optimizing latent variable that were relatively insignificant.