• Title/Summary/Keyword: Conveyor tracking

Search Result 15, Processing Time 0.024 seconds

Dynamic workspace analysis of a robot manipulator for conveyor tracking system (로봇의 동특성을 고려한 컨베이어 추적시스템의 작업영역 해석)

  • Park, Tae-Hyoung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.2
    • /
    • pp.226-234
    • /
    • 1998
  • The concept of dynamic tracking line is proposed as the feasible tracking region for a robot in a robot-conveyor system, which takes the conveyor speed into consideration. This paper presents an effective method to identify the dynamic tracking line in a robotic workcell. The maximum line speed of a robot is derived in an analytic form using the parameterized dynamics and kinematics of the manipulator, and some of its properties are established mathematically. The identification problem of the dynamic tracking line is then formulated as a root-solving problem for a single-variable equation, and solved by using a simple numerical technique. Finally, numerical examples are presented to demonstrate the methodology and its applications in workspace specification.

  • PDF

A hierachical control structure of a robot manipulator for conveyor tracking (컨베이어 추적을 위한 로보트 매니퓰레이터의 계층적 제어구조)

  • 박태형;이영대;이범희;고명삼
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.1046-1051
    • /
    • 1991
  • For the conveyor tracking application of a robot manipulator, a new control scheme is presented. The presented scheme is divided into two stages : the upper one is the motion planning stage and the lower one is the motion control stage. In the upper stage, the nominal trajectory which tracks the part moving in a constant velocity, is planned considering the robot arm dynamics. On the other hand, in the lower level, the perturbed trajectory is generated to track the variation in the velocity of conveyor belt via sensory feedback and the perturbed arm dynamics. In both stages, the conveyor tracking problem is formulated as an optimal tracking problem, and the torque constraints of a robot manipulator are taken into account. Simulation results are then presented and discussed.

  • PDF

Dynamic control approach of a robot manipulator for line-tracking applications (선추적 시스템을 위한 로봇매니퓰레이터의 동적제어)

  • Park, Tae-Hyeong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.3
    • /
    • pp.349-359
    • /
    • 1998
  • A robot control scheme for specific application a line-tracking system is newly presented. To improve the performance of line-tracking, robot arm dynamics and torque constraints are incorporated into the control scheme. The tracking problem for the workpiece on a variable-speed conveyor is formulated as an optimal tracking problem with specific criteria. Dividing the conveyor speed into the nominal term and the perturbed term, a two-stage control strategy is employed to cope with the nonlinearity and uncertainty of the robot-conveyor system. Simulation results are given to verify good tracking performance with fast cycle time and high accuracy in a robotic workcell.

  • PDF

Motion planning of a robot manipulator for conveyor tracking (컨베이어 추적을 위한 로보트 매니퓰레이터의 동작 계획)

  • 박태형;이범희;고명삼
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1989.10a
    • /
    • pp.154-159
    • /
    • 1989
  • This paper presents a motion planning algorithm for conveyor tracking. We formulate the problem as the linear quadratic tracking problem in optimal control theory and solve it through dynamic programming. In the proposed algorithm, the steady-state tracking error is eliminated completely, and the joint torque, velocity, acceleration, and jerks are considered as some constraints. Numerical examples are then presented to demonstrate the utility of the proposed motion planning algorithm.

  • PDF

Motion Planning of a Robot Manipulator for Conveyor Tracking (컨베이어 추적을 위한 로보트 매니퓰레이터의 동적계획)

  • 박태형;이범희;고명삼
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.38 no.12
    • /
    • pp.995-1006
    • /
    • 1989
  • If robots have the ability to track the parts on a moving conveyor belt, the efficiency of the manipulation tasks will be increased. This paper presents a motion planning algorithm for conveyor tracking. Tracking trajectory of a robot manipulator is determined by belt speed, initial part position, and initial robot position. Torque limit, maximum velocity, maximum acceleration and maximum jerk are also taken into account. To obtain the tracking solution, the problem is converted to the linear quadratic tracking problem. We describe the manipulator dynamics as second order state equation using parametric functions. Constraints on torques and smoothness are converted to those on input and state variables. The solution of the state equation which minimizes the performance index is obtained by dynamic programming method. Numerical examples are then presented to demonstrate the utility of the motion planning method developed.

An on-line measurement of robot tracking error via an optical PSD sensor (PSD센서를 사용한 로보트 추적 오차의 실시간 측정에 관한 연구)

  • 김완수;박용길;조형석;곽윤근
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1988.10a
    • /
    • pp.433-437
    • /
    • 1988
  • Direct measurement of the relative position between the end effector of robot and moving objects reduces difficulties caused by the joint encoder reading and transformation. For those purpose, the on-line sensing method using PSD sensor was developed in this paper. The sensor was calibrated on the precision table. Then, the relative position of a moving objects on the conveyor was measured while the robot was tracking the one.

  • PDF

A Design of Robust Adaptive Control Systems of Robot Arms for conveyor Tracking (컨베이어 추적을 위한 로보트 팔의 강인한 적응 제어계 설계)

  • 엄기환;손동설;김주홍
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.15 no.11
    • /
    • pp.945-954
    • /
    • 1990
  • In this paper, we presents a robust adaptive control system design method in the work coordinate of the robot arm for conveyor tracking. In the design, if the weighting function $L_K$ is smaller than the design parameter then the transient characteristics of system becomes stable, if $L_K$ is larger than then the system becomes unstable. Proposed design method presented here is based on model referenece adaptive control and Popov stability theorem. By the utiliza/tion of an auxilary input, it is improved the transent characteristics of the system in comparison with the conventional model reference adptive control, since the rate of V and V(t) is large. The usefulness of a proposed design method has been confirmed by computer simulations.

  • PDF

Macro-Micro Manipulation with Visual Tracking and its Application to Wheel Assembly

  • Cho Changhyun;Kang Sungchul;Kim Munsang;Song Jae-Bok
    • International Journal of Control, Automation, and Systems
    • /
    • v.3 no.3
    • /
    • pp.461-468
    • /
    • 2005
  • This paper proposes a wheel-assembly automation system, which assembles a wheel into a hub of a vehicle hung to a moving hanger in a car manufacturing line. A macro-micro manipulator control strategy is introduced to increase the system bandwidth and tracking accuracy to ensure insertion tolerance. A camera is equipped at the newly designed wheel gripper, which is attached at the center of the end-effector of the macro-micro manipulator and is used to measure position error of the hub of the vehicle in real time. The redundancy problem in the macro-micro manipulator is solved without complicated calculation by assigning proper functions to each part so that the macro part tracks the velocity error while the micro part regulates the fine position error. Experimental results indicate that tracking error satisfies the insertion tolerance of assembly $({\pm}1mm)$, and thus it is verified that the proposed system can be applied to the wheel assembly task on a moving hanger in the manufacturing line.

센서 통합 능력을 갖는 다중 로봇 Controller의 설계 기술

  • 서일홍;여희주;엄광식
    • ICROS
    • /
    • v.2 no.3
    • /
    • pp.81-91
    • /
    • 1996
  • 이 글에서는 Multi-Tasking Real Time O.S인 VxWorks를 기본으로 하여 다중센서 융합(Multi-Sensor Fusion) 능력을 갖는 다중 로봇 협조제어 시스템의 구현에 대하여 살펴보았다. 본 제어 시스템은 두대 로봇의 제어에 필요한 장애물 회피, 조건 동작(Conditional Motion) 혹은 동시동작(Concurrent Motion)과 외부 디바이스와의 동기 Motion(Conveyor Tracking)을 수행할 수 있게 구현하였고, 몇몇 작업을 통해 우수성을 입증하였다. 앞으로 본 연구와 관련한 추후 과제로는 1) 자유도가 6관절형인 수직다관절 매니퓰레이터를 위한 충돌회피 알고리즘의 개발, 2) Two Arm Robot의 상대 위치를 위한 Auto-Calibration 시스템의 개발, 3) CAD Based Trajectory 생성 등이 있다.

  • PDF

로보트를 이용한 컨베이어상에서의 연속 이동조립

  • 박용길;최현영;조형석;권대갑;곽윤근;김완수
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1989.10a
    • /
    • pp.211-215
    • /
    • 1989
  • This paper describes a dynamic robotic assembly system in which an industrial robot executes peg-in-hole task in a moving state. As an effective means to synchronize the end-effector of the robot with the moving conveyor this work uses a control algorithm which is essentially a PID position control scheme combined with velocity feedforward loop. A RCC wrist is used for the inserting task and its force responses are investigated for various tracking conditions and inserting velocities through a series of experiments.

  • PDF